論文の概要: Interpretable Bilingual Multimodal Large Language Model for Diverse Biomedical Tasks
- arxiv url: http://arxiv.org/abs/2410.18387v2
- Date: Fri, 25 Oct 2024 02:14:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 09:36:56.941473
- Title: Interpretable Bilingual Multimodal Large Language Model for Diverse Biomedical Tasks
- Title(参考訳): 多様なバイオメディカルタスクに対する解釈可能なバイリンガル多モーダル大言語モデル
- Authors: Lehan Wang, Haonan Wang, Honglong Yang, Jiaji Mao, Zehong Yang, Jun Shen, Xiaomeng Li,
- Abstract要約: 本研究の目的は,医学的MLLMの解剖学的領域全体を理解する能力を高めることである。
本稿では,最初のバイリンガル・ジェネリスト医療用AIシステムである領域認識型医療用MLLM MedRegAを提案する。
我々のモデルは、バイリンガル設定における様々な医療ビジョン言語タスクにおける強力なパフォーマンスを達成するだけでなく、マルチモーダル・メディカルスキャンにおける構造を認識し、検出することができる。
- 参考スコア(独自算出の注目度): 13.016940516468674
- License:
- Abstract: Several medical Multimodal Large Languange Models (MLLMs) have been developed to address tasks involving visual images with textual instructions across various medical modalities, achieving impressive results. Most current medical generalist models are region-agnostic, treating the entire image as a holistic representation. However, they struggle to identify which specific regions they are focusing on when generating a sentence. To mimic the behavior of doctors, who typically begin by reviewing the entire image before concentrating on specific regions for a thorough evaluation, we aim to enhance the capability of medical MLLMs in understanding anatomical regions within entire medical scans. To achieve it, we first formulate Region-Centric tasks and construct a large-scale dataset, MedRegInstruct, to incorporate regional information into training. Combining our collected dataset with other medical multimodal corpora for training, we propose a Region-Aware medical MLLM, MedRegA, which is the first bilingual generalist medical AI system to simultaneously handle image-level and region-level medical vision-language tasks across a broad range of modalities. Our MedRegA not only enables three region-centric tasks, but also achieves the best performance for visual question answering, report generation and medical image classification over 8 modalities, showcasing significant versatility. Experiments demonstrate that our model can not only accomplish powerful performance across various medical vision-language tasks in bilingual settings, but also recognize and detect structures in multimodal medical scans, boosting the interpretability and user interactivity of medical MLLMs. Our project page is https://medrega.github.io.
- Abstract(参考訳): いくつかの医療用マルチモーダル大型ラングアンジモデル (MLLM) が開発され, 様々な医療用モダリティのテキストによる視覚イメージの関与に対処し, 目覚しい結果を得た。
現在の医療一般論モデルのほとんどは領域に依存しないものであり、全体像を全体像として扱う。
しかし、文を生成する際にどの特定の領域に焦点を当てているかを特定するのに苦労する。
本研究は, 医用MLLMの医用スキャン全体における解剖学的領域の理解能力を高めることを目的として, より詳細な評価のために, 特定の領域に集中する前に画像全体をレビューすることから始まる医師の行動を模倣する。
そこで我々はまず、地域中心のタスクを定式化し、大規模データセットMedRegInstructを構築して、地域情報をトレーニングに組み込む。
収集したデータセットと、他の医療用マルチモーダルコーパスを組み合わせることで、幅広いモダリティにわたって画像レベルおよび地域レベルの医療ビジョン言語タスクを同時に扱う最初のバイリンガル・ジェネリスト医療AIシステムである、地域対応医療MLLM(MedRegA)を提案する。
私たちのMedRegAは3つの領域中心のタスクを可能にするだけでなく、視覚的質問応答、レポート生成、医療画像分類において8つのモードで最高のパフォーマンスを実現し、大きな汎用性を示している。
実験により,本モデルはバイリンガル・セッティングにおいて,様々な医用視覚言語タスクにまたがる強力な性能を実現するだけでなく,マルチモーダル・メディカルスキャンにおける構造を認識し,検出し,医療MLLMの解釈可能性やユーザインタラクション性を高めることができることが示された。
私たちのプロジェクトページはhttps://medrega.github.io.comです。
関連論文リスト
- Parameter-Efficient Fine-Tuning Medical Multimodal Large Language Models for Medical Visual Grounding [9.144030136201476]
マルチモーダル大言語モデル(MLLM)は、LLMの優れたテキスト理解能力を継承し、これらの機能をマルチモーダルシナリオに拡張する。
これらのモデルは、マルチモーダルタスクの一般領域において優れた結果をもたらす。
しかし,医療分野では,医療用MLLMの開発に多大なトレーニングコストと広範な医療データを必要とすることが課題となっている。
論文 参考訳(メタデータ) (2024-10-31T11:07:26Z) - MedViLaM: A multimodal large language model with advanced generalizability and explainability for medical data understanding and generation [40.9095393430871]
MedViLaMは、医用データの汎用モデルに向けた統合視覚言語モデルである。
MedViLaMは、臨床言語や画像など、様々な形の医療データを柔軟にエンコードし、解釈することができる。
ゼロショットの一般化を新しい医療概念やタスクに適用し、異なるタスク間で効果的な伝達学習を行い、ゼロショットの医学推論が出現する事例を提示する。
論文 参考訳(メタデータ) (2024-09-29T12:23:10Z) - ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
MVKLは,マルチビュー画像,詳細な表示,報告を含む最初のマルチモーダルマンモグラフィーデータセットである。
このデータセットに基づいて、教師なし事前学習のチャラリングタスクに焦点を当てる。
視覚,知識,言語機能を相乗化するフレームワークであるViKLを提案する。
論文 参考訳(メタデータ) (2024-09-24T05:01:23Z) - MOSMOS: Multi-organ segmentation facilitated by medical report supervision [10.396987980136602]
マルチオーガンスーパービジョン(MOS)のための新しい事前学習・微調整フレームワークを提案する。
具体的には、まず、トレーニング前の段階で、医用画像とレポートのペアを合わせるために、グローバルコントラスト学習を導入する。
さらに,画像画素と臓器タグ間の意味的対応を暗黙的に学習するために,マルチラベル認識を活用する。
論文 参考訳(メタデータ) (2024-09-04T03:46:17Z) - MedTrinity-25M: A Large-scale Multimodal Dataset with Multigranular Annotations for Medicine [53.01393667775077]
本稿では,医療用大規模マルチモーダルデータセットであるMedTrinity-25Mを紹介する。
10のモダリティで2500万枚以上の画像をカバーしており、65以上の疾患に対する多彩なアノテーションがある。
画像テキストペアの可用性によって制限された既存のアプローチとは異なり、私たちは最初の自動パイプラインを開発しました。
論文 参考訳(メタデータ) (2024-08-06T02:09:35Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
我々は,空間的・時間的微粒なモデリングのためのMed-STフレームワークを提案する。
空間モデリングでは、Med-STはMixture of View Expert (MoVE)アーキテクチャを使用して、正面と横の両方のビューから異なる視覚的特徴を統合する。
時間的モデリングのために,フォワードマッピング分類 (FMC) とリバースマッピング回帰 (RMR) による新たな双方向サイクル整合性目標を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:15:09Z) - A Generalist Learner for Multifaceted Medical Image Interpretation [14.75683710779724]
医用画像解釈のためのフレキシブルな学習とタスク作成を可能にする一般学習者であるMedVersaを提案する。
学習可能なオーケストレータとして大きな言語モデルを活用することで、MedVersaは視覚と言語の両方から学び、マルチモーダル入力をサポートし、リアルタイムタスク仕様を実行することができる。
我々の実験は、MedVersaが9つのタスクで最先端のパフォーマンスを達成し、時にはスペシャリストを10%以上上回っていることを示した。
論文 参考訳(メタデータ) (2024-05-13T17:58:51Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - OmniMedVQA: A New Large-Scale Comprehensive Evaluation Benchmark for Medical LVLM [48.16696073640864]
我々は,新しい包括的ビジュアル質問回答(VQA)ベンチマークであるOmniMedVQAを紹介する。
このベンチマークのすべての画像は、本物の医療シナリオから得られたものです。
既存のLVLMはこれらの医療用VQA問題に効果的に取り組むのに苦労していることがわかった。
論文 参考訳(メタデータ) (2024-02-14T13:51:56Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation [38.61227663176952]
医用画像理解基盤モデルの構築を目的としたパラダイムであるユニバーサル・メディカルイメージ・セグメンテーションへのシフトを提案する。
医用画像セグメンテーションにおけるデータの異質性やアノテーションの違いに対処する新しい文脈優先学習手法であるHermesを開発した。
論文 参考訳(メタデータ) (2023-06-04T17:39:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。