Research on gesture recognition method based on SEDCNN-SVM
- URL: http://arxiv.org/abs/2410.18557v1
- Date: Thu, 24 Oct 2024 09:02:56 GMT
- Title: Research on gesture recognition method based on SEDCNN-SVM
- Authors: Mingjin Zhang, Jiahao Wang, Jianming Wang, Qi Wang,
- Abstract summary: SEDCNN-SVM is proposed to recognize sEMG of different gestures.
SEDCNN-SVM consists of an improved deep convolutional neural network (DCNN) and a support vector machine (SVM)
- Score: 23.334616185686
- License:
- Abstract: Gesture recognition based on surface electromyographic signal (sEMG) is one of the most used methods. The traditional manual feature extraction can only extract some low-level signal features, this causes poor classifier performance and low recognition accuracy when dealing with some complex signals. A recognition method, namely SEDCNN-SVM, is proposed to recognize sEMG of different gestures. SEDCNN-SVM consists of an improved deep convolutional neural network (DCNN) and a support vector machine (SVM). The DCNN can automatically extract and learn the feature information of sEMG through the convolution operation of the convolutional layer, so that it can capture the complex and high-level features in the data. The Squeeze and Excitation Networks (SE-Net) and the residual module were added to the model, so that the feature representation of each channel could be improved, the loss of feature information in convolutional operations was reduced, useful feature information was captured, and the problem of network gradient vanishing was eased. The SVM can improve the generalization ability and classification accuracy of the model by constructing an optimal hyperplane of the feature space. Hence, the SVM was used to replace the full connection layer and the Softmax function layer of the DCNN, the use of a suitable kernel function in SVM can improve the model's generalization ability and classification accuracy. To verify the effectiveness of the proposed classification algorithm, this method is analyzed and compared with other comparative classification methods. The recognition accuracy of SEDCNN-SVM can reach 0.955, it is significantly improved compared with other classification methods, the SEDCNN-SVM model is recognized online in real time.
Related papers
- Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Evaluating Fast Adaptability of Neural Networks for Brain-Computer Interface [0.23020018305241333]
We use motor movement and imaginary signals as input to Convolutional Neural Networks (CNN) based classifier for experiments.
We empirically show that layer-normalization can improve the adaptability of CNN-based EEG classifiers with not more than ten fine-tuning steps.
arXiv Detail & Related papers (2024-04-14T22:36:53Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
Convolutional neural networks (CNNs) are a representative class of deep learning algorithms.
We introduce SA-CNN neural networks for text classification tasks based on Text-CNN neural networks.
arXiv Detail & Related papers (2023-03-13T14:27:34Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Ghost-dil-NetVLAD: A Lightweight Neural Network for Visual Place Recognition [3.6249801498927923]
We propose a lightweight weakly supervised end-to-end neural network consisting of a front-ended perception model called GhostCNN and a learnable VLAD layer as a back-end.
To enhance our proposed lightweight model further, we add dilated convolutions to the Ghost module to get features containing more spatial semantic information, improving accuracy.
arXiv Detail & Related papers (2021-12-22T06:05:02Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - A Convolutional Deep Markov Model for Unsupervised Speech Representation
Learning [32.59760685342343]
Probabilistic Latent Variable Models provide an alternative to self-supervised learning approaches for linguistic representation learning from speech.
In this work, we propose ConvDMM, a Gaussian state-space model with non-linear emission and transition functions modelled by deep neural networks.
When trained on a large scale speech dataset (LibriSpeech), ConvDMM produces features that significantly outperform multiple self-supervised feature extracting methods.
arXiv Detail & Related papers (2020-06-03T21:50:20Z) - Classification of Hand Gestures from Wearable IMUs using Deep Neural
Network [0.0]
An Inertial Measurement Unit (IMU) consists of tri-axial accelerometers and gyroscopes which can together be used for formation analysis.
The paper presents a novel classification approach using a Deep Neural Network (DNN) for classifying hand gestures obtained from wearable IMU sensors.
arXiv Detail & Related papers (2020-04-27T01:08:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.