Task Calibration: Calibrating Large Language Models on Inference Tasks
- URL: http://arxiv.org/abs/2410.18764v1
- Date: Thu, 24 Oct 2024 14:18:32 GMT
- Title: Task Calibration: Calibrating Large Language Models on Inference Tasks
- Authors: Yingjie Li, Yun Luo, Xiaotian Xie, Yue Zhang,
- Abstract summary: Large language models (LLMs) have exhibited impressive zero-shot performance on inference tasks.
LLMs may suffer from spurious correlations between input texts and output labels, which limits their ability to reason.
We propose task calibration (TC), a zero-shot and inference-only calibration method inspired by mutual information.
- Score: 23.257422868895855
- License:
- Abstract: Large language models (LLMs) have exhibited impressive zero-shot performance on inference tasks. However, LLMs may suffer from spurious correlations between input texts and output labels, which limits LLMs' ability to reason based purely on general language understanding. In other words, LLMs may make predictions primarily based on premise or hypothesis, rather than both components. To address this problem that may lead to unexpected performance degradation, we propose task calibration (TC), a zero-shot and inference-only calibration method inspired by mutual information which recovers LLM performance through task reformulation. TC encourages LLMs to reason based on both premise and hypothesis, while mitigating the models' over-reliance on individual premise or hypothesis for inference. Experimental results show that TC achieves a substantial improvement on 13 inference tasks in the zero-shot setup. We further validate the effectiveness of TC in few-shot setups and various natural language understanding tasks. Further analysis indicates that TC is also robust to prompt templates and has the potential to be integrated with other calibration methods.
Related papers
- Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions.
But studies reveal that they often struggle with tasks requiring reasoning, such as math or physics limitation.
This raises questions about whether LLMs truly comprehend embedded knowledge or merely learn to replicate the token distribution without a true understanding of the content.
We propose Decon Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities.
arXiv Detail & Related papers (2024-09-04T13:17:09Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
A novel causal prompting method based on front-door adjustment is proposed to effectively mitigate Large Language Models (LLMs) biases.
Experimental results show that the proposed causal prompting approach achieves excellent performance across seven natural language processing datasets.
arXiv Detail & Related papers (2024-03-05T07:47:34Z) - Identifying Factual Inconsistencies in Summaries: Grounding LLM Inference via Task Taxonomy [48.29181662640212]
Factual inconsistencies pose a significant hurdle for the faithful summarization by generative models.
We consolidate key error types of inconsistent facts in summaries, and incorporate them to facilitate both the zero-shot and supervised paradigms of LLMs.
arXiv Detail & Related papers (2024-02-20T08:41:23Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Batch Calibration: Rethinking Calibration for In-Context Learning and
Prompt Engineering [12.967536233145614]
Batch (BC) is a simple yet intuitive method that controls the contextual bias from the batched input.
BC is zero-shot, inference-only, and incurs negligible additional costs.
We demonstrate state-of-the-art performance over previous calibration baselines across more than 10 natural language understanding and image classification tasks.
arXiv Detail & Related papers (2023-09-29T13:55:45Z) - Benchmarking Causal Study to Interpret Large Language Models for Source
Code [6.301373791541809]
This paper introduces a benchmarking strategy named Galeras comprised of curated testbeds for three SE tasks.
We illustrate the insights of our benchmarking strategy by conducting a case study on the performance of ChatGPT under distinct prompt engineering methods.
arXiv Detail & Related papers (2023-08-23T20:32:12Z) - Making Pre-trained Language Models both Task-solvers and
Self-calibrators [52.98858650625623]
Pre-trained language models (PLMs) serve as backbones for various real-world systems.
Previous work shows that introducing an extra calibration task can mitigate this issue.
We propose a training algorithm LM-TOAST to tackle the challenges.
arXiv Detail & Related papers (2023-07-21T02:51:41Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.