論文の概要: From English-Centric to Effective Bilingual: LLMs with Custom Tokenizers for Underrepresented Languages
- arxiv url: http://arxiv.org/abs/2410.18836v1
- Date: Thu, 24 Oct 2024 15:20:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 16:44:24.657525
- Title: From English-Centric to Effective Bilingual: LLMs with Custom Tokenizers for Underrepresented Languages
- Title(参考訳): 英語から効果的なバイリンガル: 表現不足言語のためのカスタムトケナイザ付きLLM
- Authors: Artur Kiulian, Anton Polishko, Mykola Khandoga, Yevhen Kostiuk, Guillermo Gabrielli, Łukasz Gagała, Fadi Zaraket, Qusai Abu Obaida, Hrishikesh Garud, Wendy Wing Yee Mak, Dmytro Chaplynskyi, Selma Belhadj Amor, Grigol Peradze,
- Abstract要約: そこで本研究では,二言語ベース大言語モデル (LLM) を開発するための,モデルに依存しないコスト効率のアプローチを提案する。
私たちは3つの言語で実験を行い、それぞれが非ラテン文字(ウクライナ語、アラビア語、グルジア語)を使用しました。
- 参考スコア(独自算出の注目度): 0.5706164516481158
- License:
- Abstract: In this paper, we propose a model-agnostic cost-effective approach to developing bilingual base large language models (LLMs) to support English and any target language. The method includes vocabulary expansion, initialization of new embeddings, model training and evaluation. We performed our experiments with three languages, each using a non-Latin script - Ukrainian, Arabic, and Georgian. Our approach demonstrates improved language performance while reducing computational costs. It mitigates the disproportionate penalization of underrepresented languages, promoting fairness and minimizing adverse phenomena such as code-switching and broken grammar. Additionally, we introduce new metrics to evaluate language quality, revealing that vocabulary size significantly impacts the quality of generated text.
- Abstract(参考訳): 本稿では,二言語ベース大言語モデル(LLM)を開発するためのモデルに依存しない費用対効果のアプローチを提案する。
この方法は、語彙展開、新しい埋め込みの初期化、モデルトレーニングおよび評価を含む。
私たちは3つの言語で実験を行い、それぞれが非ラテン文字(ウクライナ語、アラビア語、グルジア語)を使用しました。
提案手法は,計算コストを削減しつつ,言語性能の向上を実証する。
あまり表現されていない言語の不当なペナル化を緩和し、公平性を促進し、コードスイッチングや文法の破片のような有害な現象を最小限にする。
さらに,言語品質を評価するための新しい指標を導入し,語彙サイズが生成したテキストの品質に大きく影響することを明らかにする。
関連論文リスト
- Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Breaking Boundaries: Investigating the Effects of Model Editing on Cross-linguistic Performance [6.907734681124986]
本稿では,多言語文脈における知識編集技術を検討することにより,言語的平等の必要性を戦略的に識別する。
Mistral, TowerInstruct, OpenHathi, Tamil-Llama, Kan-Llamaなどのモデルの性能を,英語,ドイツ語,フランス語,イタリア語,スペイン語,ヒンディー語,タミル語,カンナダ語を含む言語で評価した。
論文 参考訳(メタデータ) (2024-06-17T01:54:27Z) - Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models [12.700783525558721]
GPT-3やLLaMAのような英語中心のLarge Language Models (LLM)は、多言語タスクを実行する素晴らしい能力を示している。
本稿では,シーケンスラベリングタスクにおいて,これらのLLMの言語構造理解を探索するための分解的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-02-28T15:15:39Z) - Accelerating Multilingual Language Model for Excessively Tokenized Languages [3.5570874721859016]
大型言語モデル(LLM)のトークン化子は、文字やUnicodeレベルのトークンを非ローマ語アルファベットの言語で断片化することが多い。
このような言語でテキスト生成を高速化する,シンプルで効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-19T12:26:57Z) - Embedding structure matters: Comparing methods to adapt multilingual
vocabularies to new languages [20.17308477850864]
事前訓練された多言語言語モデルは、英語以外の現代のNLPツールの大部分を支えている。
本稿では,言語間語彙をコンパクトな言語固有の語彙に置き換える,いくつかの簡単な手法を提案する。
論文 参考訳(メタデータ) (2023-09-09T04:27:18Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Tokenization Impacts Multilingual Language Modeling: Assessing
Vocabulary Allocation and Overlap Across Languages [3.716965622352967]
サブワードトークン化器で観測される語彙表現と語彙重複の質を評価するための新しい基準を提案する。
以上の結果から,言語間の語彙の重複は,特定の下流課題に支障を来す可能性があることが示唆された。
論文 参考訳(メタデータ) (2023-05-26T18:06:49Z) - CLSE: Corpus of Linguistically Significant Entities [58.29901964387952]
専門家が注釈を付けた言語学的に重要なエンティティ(CLSE)のコーパスをリリースする。
CLSEは74種類のセマンティックタイプをカバーし、航空券売機からビデオゲームまで様々なアプリケーションをサポートする。
言語的に代表されるNLG評価ベンチマークを,フランス語,マラティー語,ロシア語の3言語で作成する。
論文 参考訳(メタデータ) (2022-11-04T12:56:12Z) - Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation [127.81351683335143]
クロスリンガルプリトレーニングは、2つの言語の語彙的表現と高レベル表現を整列させるモデルを必要とする。
これまでの研究では、これは表現が十分に整合していないためです。
本稿では,語彙レベルの情報で事前学習するバイリンガルマスク言語モデルを,型レベルのクロスリンガルサブワード埋め込みを用いて強化する。
論文 参考訳(メタデータ) (2021-03-18T21:17:58Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
本稿では,ラベル保存型入力摂動の最大損失を最小限に抑える半教師付き対向学習法を提案する。
多様な言語群に対する文書分類と意図分類において,有効性が著しく向上するのを観察する。
論文 参考訳(メタデータ) (2020-07-29T19:38:35Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
ソース言語の単語順に適合する言語間モデルでは、ターゲット言語を処理できない可能性がある。
本研究では,ソース言語の単語順序に敏感なモデルを作成することで,対象言語の適応性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2020-01-30T03:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。