論文の概要: ArterialNet: Reconstructing Arterial Blood Pressure Waveform with Wearable Pulsatile Signals, a Cohort-Aware Approach
- arxiv url: http://arxiv.org/abs/2410.18895v2
- Date: Sun, 27 Oct 2024 12:47:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:21:58.600696
- Title: ArterialNet: Reconstructing Arterial Blood Pressure Waveform with Wearable Pulsatile Signals, a Cohort-Aware Approach
- Title(参考訳): ArterialNet:ウェアラブル脈波を用いた動脈圧波形の再構成とコホート・アウェア・アプローチ
- Authors: Sicong Huang, Roozbeh Jafari, Bobak J. Mortazavi,
- Abstract要約: ArterialNetは、一般化されたパルサタイル-ABP信号変換と、ハイブリッド損失関数と正規化を用いたパーソナライズされた特徴抽出を統合している。
我々はMIMIC-IIIデータセットを用いてArterialNetを検証し,少なくとも標準偏差が58%低い5.41 mmHgの根平均二乗誤差(RMSE)を達成した。
- 参考スコア(独自算出の注目度): 10.186630118011692
- License:
- Abstract: Continuous arterial blood pressure (ABP) monitoring is invasive but essential for hemodynamic monitoring. Recent techniques have reconstructed ABP non-invasively using pulsatile signals but produced inaccurate systolic and diastolic blood pressure (SBP and DBP) values and were sensitive to individual variability. ArterialNet integrates generalized pulsatile-to-ABP signal translation and personalized feature extraction using hybrid loss functions and regularization. We validated ArterialNet using the MIMIC-III dataset and achieved a root mean square error (RMSE) of 5.41 mmHg, with at least a 58% lower standard deviation. ArterialNet reconstructed ABP with an RMSE of 7.99 mmHg in remote health scenarios. ArterialNet achieved superior performance in ABP reconstruction and SBP and DBP estimations, with significantly reduced subject variance, demonstrating its potential in remote health settings. We also ablated ArterialNet architecture to investigate the contributions of each component and evaluated its translational impact and robustness by conducting a series of ablations on data quality and availability.
- Abstract(参考訳): 連続的動脈血圧モニタリング(ABP)は侵襲的だが血行動態モニタリングには不可欠である。
近年のAPPは非侵襲的に脈拍波信号を用いて再建されているが,不正確な収縮,拡張期血圧(SBP,DBP)値が得られ,個々の変動に敏感であった。
ArterialNetは、一般化されたパルサタイル-ABP信号変換と、ハイブリッド損失関数と正規化を用いたパーソナライズされた特徴抽出を統合している。
我々はMIMIC-IIIデータセットを用いてArterialNetを検証し,少なくとも標準偏差が58%低い5.41 mmHgの根平均二乗誤差(RMSE)を達成した。
ArterialNetは、遠隔医療シナリオにおいてRMSEの7.99mmHgでAPPを再構築した。
ArterialNet は ABP 再建と SBP と DBP 推定において優れた性能を達成し,被験者の分散を著しく低減し,遠隔医療におけるその可能性を示した。
また、ArterialNetアーキテクチャを改良して、各コンポーネントのコントリビューションを調査し、データ品質と可用性に関する一連の改善を行うことで、その翻訳的影響とロバスト性を評価した。
関連論文リスト
- Adversarial Contrastive Learning Based Physics-Informed Temporal Networks for Cuffless Blood Pressure Estimation [37.94387581519217]
逆相関学習を用いた物理インフォームド・テンポラル・ネットワーク(PITN)を導入し,非常に限られたデータで正確なBP推定を実現する。
次に, 対人訓練を駆使して生理的時系列データを生成し, スパースデータに面したPITNの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-08-16T02:17:21Z) - TransfoRhythm: A Transformer Architecture Conductive to Blood Pressure Estimation via Solo PPG Signal Capturing [5.255373360156652]
血圧(BP)は、高血圧の正確かつタイムリーな診断および/または治療のための重要な健康指標である。
人工知能(AI)とディープニューラルネットワーク(DNN)の最近の進歩は、データ駆動ソリューションの開発への関心の高まりにつながっている。
本研究は,カフレスBP推定にMIMIC IVデータセットを適用した最初の研究である。
論文 参考訳(メタデータ) (2024-04-15T00:36:33Z) - A Finger on the Pulse of Cardiovascular Health: Estimating Blood Pressure with Smartphone Photoplethysmography-Based Pulse Waveform Analysis [2.4347312660509672]
本研究は, 血圧推定のためのスマートフォンを用いた光プラチスモグラフィー(SPW-BP)の革新的4つの戦略を提案する。
我々は,高次正規化やデータ削除,境界信号再構成など,しばしば無視されるデータ品質改善技術を採用している。
相関とSHAP分析はBP推定を改善するための重要な特徴を同定した。
しかし, Bland-Altman 分析では系統的偏りがみられ, MAE 解析ではAAMI と BHS の精度基準を満たしていないことがわかった。
論文 参考訳(メタデータ) (2024-01-20T05:05:17Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
我々は、AI支援薬物発見のための体系的なOODデータセットキュレーターおよびベンチマークであるTarmOODを提案する。
DrugOODには、ベンチマークプロセスを完全に自動化するオープンソースのPythonパッケージが付属している。
我々は、薬物標的結合親和性予測という、AIDDにおける最も重要な問題の1つに焦点を当てる。
論文 参考訳(メタデータ) (2022-01-24T12:32:48Z) - A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP)
from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals [1.1695966610359496]
病院で血液圧(BP)の連続モニタリングに使われている方法のほとんどは、侵襲的である。
本研究では,光胸腺図や心電図などの非侵襲的に収集可能な信号からBPを予測するためのオートエンコーダの適用性を検討した。
非常に浅い1次元オートエンコーダは、非常に大きなデータセット上で最先端の性能でSBPとDBPを予測するために関連する特徴を抽出できることがわかった。
論文 参考訳(メタデータ) (2021-11-12T19:34:20Z) - A Novel Clustering-Based Algorithm for Continuous and Non-invasive
Cuff-Less Blood Pressure Estimation [0.0]
心電図(ECG)信号と動脈血圧(ABP)データから抽出した特徴に基づく血圧推定法を開発した。
クラスタリング手法を適用して, モデル作成の精度を高く評価し, 比較した。
以上の結果から,SBP (Systolic Blood Pressure) とDBP (Distolic Blood Pressure) の精度が向上することが示唆された。
論文 参考訳(メタデータ) (2021-10-13T19:16:10Z) - A Deep Learning Approach to Predict Blood Pressure from PPG Signals [10.028103259763352]
血圧(BP)は、身体の生命維持機能を示す4つの主要な重要な兆候の1つである。
PPG信号に基づいてBPを推定するために,3層ディープニューラルネットワークを用いた高度なデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2021-07-30T22:45:34Z) - Ambulatory blood pressure monitoring versus office blood pressure
measurement: Are there sex differences? [55.41644538483948]
オフィス血圧測定(英語: Office Blood Pressure Measurement, OBP)は、血圧を24時間で測定する技術である。
本研究の目的は,高血圧を疑う822名の患者において,性差がOBPとABPMの相違に及ぼす影響について検討することである。
論文 参考訳(メタデータ) (2021-06-04T10:09:44Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
本稿では,網膜血管,動脈,静脈を同時に分割する空間活性化機構を備えたマルチタスクディープニューラルネットワークを提案する。
提案するネットワークは,容器分割における画素ワイド精度95.70%,A/V分類精度94.50%を実現している。
論文 参考訳(メタデータ) (2020-07-18T05:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。