MissNODAG: Differentiable Cyclic Causal Graph Learning from Incomplete Data
- URL: http://arxiv.org/abs/2410.18918v1
- Date: Thu, 24 Oct 2024 17:09:10 GMT
- Title: MissNODAG: Differentiable Cyclic Causal Graph Learning from Incomplete Data
- Authors: Muralikrishnna G. Sethuraman, Razieh Nabi, Faramarz Fekri,
- Abstract summary: We propose MissNODAG, a framework for learning the underlying cyclic causal graph and the missingness mechanism from partially observed data.
Our framework integrates an additive noise model with an expectation-maximization procedure, alternating between imputing missing values and optimizing the observed data likelihood.
We demonstrate the effectiveness of MissNODAG through synthetic experiments and an application to real-world gene perturbation data.
- Score: 13.006241141102
- License:
- Abstract: Causal discovery in real-world systems, such as biological networks, is often complicated by feedback loops and incomplete data. Standard algorithms, which assume acyclic structures or fully observed data, struggle with these challenges. To address this gap, we propose MissNODAG, a differentiable framework for learning both the underlying cyclic causal graph and the missingness mechanism from partially observed data, including data missing not at random. Our framework integrates an additive noise model with an expectation-maximization procedure, alternating between imputing missing values and optimizing the observed data likelihood, to uncover both the cyclic structures and the missingness mechanism. We demonstrate the effectiveness of MissNODAG through synthetic experiments and an application to real-world gene perturbation data.
Related papers
- Learning Cyclic Causal Models from Incomplete Data [13.69726643902085]
We propose a novel framework, named MissNODAGS, for learning cyclic causal graphs from partially missing data.
Under the additive noise model, MissNODAGS learns the causal graph by alternating between imputing the missing data and maximizing the expected log-likelihood of the visible part of the data.
We demonstrate improved performance when compared to using state-of-the-art imputation techniques followed by causal learning on partially missing interventional data.
arXiv Detail & Related papers (2024-02-23T22:03:12Z) - Causal disentanglement of multimodal data [1.589226862328831]
We introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships.
Our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.
arXiv Detail & Related papers (2023-10-27T20:30:11Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - CUTS: Neural Causal Discovery from Irregular Time-Series Data [27.06531262632836]
Causal discovery from time-series data has been a central task in machine learning.
We present CUTS, a neural Granger causal discovery algorithm to jointly impute unobserved data points and build causal graphs.
Our approach constitutes a promising step towards applying causal discovery to real applications with non-ideal observations.
arXiv Detail & Related papers (2023-02-15T04:16:34Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
Gene regulatory networks (GRN) describe interactions between genes and their products that control gene expression and cellular function.
Existing methods either focus on challenge (1), identifying cyclic structure from dynamics, or on challenge (2) learning complex Bayesian posteriors over DAGs, but not both.
In this paper we leverage the fact that it is possible to estimate the "velocity" of gene expression with RNA velocity techniques to develop an approach that addresses both challenges.
arXiv Detail & Related papers (2023-02-08T16:36:40Z) - NODAGS-Flow: Nonlinear Cyclic Causal Structure Learning [8.20217860574125]
We propose a novel framework for learning nonlinear cyclic causal models from interventional data, called NODAGS-Flow.
We show significant performance improvements with our approach compared to state-of-the-art methods with respect to structure recovery and predictive performance.
arXiv Detail & Related papers (2023-01-04T23:28:18Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Characterization and Greedy Learning of Gaussian Structural Causal
Models under Unknown Interventions [3.441021278275805]
We consider the problem of recovering the causal structure underlying observations when the targets of the interventions in each experiment are unknown.
We derive a greedy algorithm called GnIES to recover the equivalence class of the data-generating model without knowledge of the intervention targets.
We leverage this procedure and evaluate the performance of GnIES on synthetic, real, and semi-synthetic data sets.
arXiv Detail & Related papers (2022-11-27T17:37:21Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
We develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations.
MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization framework.
We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
arXiv Detail & Related papers (2022-05-27T09:59:46Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.