論文の概要: Evaluating the Efficacy of Vectocardiographic and ECG Parameters for Efficient Tertiary Cardiology Care Allocation Using Decision Tree Analysis
- arxiv url: http://arxiv.org/abs/2412.11839v1
- Date: Mon, 16 Dec 2024 15:01:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:54:33.709308
- Title: Evaluating the Efficacy of Vectocardiographic and ECG Parameters for Efficient Tertiary Cardiology Care Allocation Using Decision Tree Analysis
- Title(参考訳): 心電図および心電図パラメーターを用いた心電図を用いた心電図解析の有用性の検討
- Authors: Lucas José da Costa, Vinicius Ruiz Uemoto, Mariana F. N. de Marchi, Renato de Aguiar Hortegal, Renata Valeri de Freitas,
- Abstract要約: 実単語データを用いてGEHの心電図マーカーの性能を機械学習モデルの特徴として評価する。
GEHパラメータは、この人口に統計的に有意であることが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Use real word data to evaluate the performance of the electrocardiographic markers of GEH as features in a machine learning model with Standard ECG features and Risk Factors in Predicting Outcome of patients in a population referred to a tertiary cardiology hospital. Patients forwarded to specific evaluation in a cardiology specialized hospital performed an ECG and a risk factor anamnesis. A series of follow up attendances occurred in periods of 6 months, 12 months and 15 months to check for cardiovascular related events (mortality or new nonfatal cardiovascular events (Stroke, MI, PCI, CS), as identified during 1-year phone follow-ups. The first attendance ECG was measured by a specialist and processed in order to obtain the global electric heterogeneity (GEH) using the Kors Matriz. The ECG measurements, GEH parameters and risk factors were combined for training multiple instances of XGBoost decision trees models. Each instance were optmized for the AUCPR and the instance with higher AUC is chosen as representative to the model. The importance of each parameter for the winner tree model was compared to better understand the improvement from using GEH parameters. The GEH parameters turned out to have statistical significance for this population specially the QRST angle and the SVG. The combined model with the tree parameters class had the best performance. The findings suggest that using VCG features can facilitate more accurate identification of patients who require tertiary care, thereby optimizing resource allocation and improving patient outcomes. Moreover, the decision tree model's transparency and ability to pinpoint critical features make it a valuable tool for clinical decision-making and align well with existing clinical practices.
- Abstract(参考訳): GEHの心電図マーカーを標準心電図の特徴とリスクファクターを有する機械学習モデルの特徴として, 心電図マーカーの性能を評価するために実単語データを用いた。
循環器科専門病院では,心電図とリスクファクター・アナムネシスを施行した。
術後6カ月,12カ月,15カ月の経過観察を行い,1年間の追跡調査で確認された心血管系イベント(Stroke, MI, PCI, CS)を調べた。
最初のECGは専門家によって測定され、Kors Matrizを用いて地球規模の電気異質性(GEH)を得るために処理された。
ECG測定,GEHパラメータ,リスク要因を組み合わせて,XGBoost決定木モデルの複数インスタンスをトレーニングした。
各インスタンスはAUCPRに対して最適化され、より高いAUCを持つインスタンスがモデルの代表として選択される。
勝者木モデルにおける各パラメータの重要性を比較して,GEHパラメータの使用による改善をよりよく理解した。
GEHパラメータは、特にQRST角とSVGについて統計学的に有意であることが判明した。
ツリーパラメータクラスと組み合わせたモデルは、最高のパフォーマンスでした。
以上の結果から,VCG機能を利用することで,第三次ケアを必要とする患者のより正確な識別が容易であることが示唆された。
さらに、決定木モデルの透明性と重要な特徴を特定できる能力は、既存の臨床実践と整合し、臨床決定のための貴重なツールとなる。
関連論文リスト
- DE-PADA: Personalized Augmentation and Domain Adaptation for ECG Biometrics Across Physiological States [6.857781758172894]
パーソナライズされた拡張とドメイン適応を備えたデュアルエキスパートモデルであるDE-PADAを提案する。
このモデルは、エクササイズデータに直接露出することなく、主に安静状態データに基づいて訓練されている。
トロント大学ECGデータベースの実験では、モデルの有効性が示されている。
論文 参考訳(メタデータ) (2025-02-07T14:46:13Z) - rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG [3.0473237906125954]
本稿では,心電図解析と不整脈分類のための新しいマルチモーダル手法を提案する。
提案したrECGnition_v1.0アルゴリズムはクリニックへの展開の道を開く。
論文 参考訳(メタデータ) (2024-10-09T11:17:02Z) - ElectroCardioGuard: Preventing Patient Misidentification in
Electrocardiogram Databases through Neural Networks [0.0]
臨床的には, 誤診患者に対する心電図記録の割り当ては不注意に発生することがある。
本稿では,2つの心電図が同一患者に由来するかどうかを判定する,小型で効率的な神経ネットワークモデルを提案する。
PTB-XL 上でのギャラリープローブによる患者識別において、760 倍のパラメータを用いて最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-06-09T18:53:25Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
コンパクトな1次元自己組織化オペレーショナルニューラルネットワーク(Self-ONN)を用いた患者間心電図分類のための新しいアプローチを提案する。
我々は1D Self-ONN層を用いてECGデータから形態表現を自動的に学習し、Rピーク付近のECG波形の形状を捉えることができた。
提案手法は,MIT-BIH ベンチマークデータベースを用いて,これまでで最高の分類性能を達成している。
論文 参考訳(メタデータ) (2022-04-07T22:49:18Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
本研究では,人工知能を用いた心房細動検出法を提案する。
本研究の目的は, 心臓科医と人工知能の診断精度をリードI心電図と比較することである。
論文 参考訳(メタデータ) (2021-04-15T12:50:16Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
我々は,心電図の診断を分類するために,形態や信号処理機能に適合した勾配強化木のアンサンブルを用いたアルゴリズムを構築した。
各リードについて、心拍変動、PQRSTテンプレート形状、全信号波形から特徴を導出する。
各クラスに属するECGインスタンスの確率を予測するため、全12項目の特徴と合わせて、勾配を増す決定ツリーの集合に適合する。
論文 参考訳(メタデータ) (2020-10-21T18:11:36Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。