論文の概要: A Counterexample in Cross-Correlation Template Matching
- arxiv url: http://arxiv.org/abs/2410.19085v1
- Date: Thu, 24 Oct 2024 18:42:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:37:21.261635
- Title: A Counterexample in Cross-Correlation Template Matching
- Title(参考訳): 相互相関テンプレートマッチングにおける反例
- Authors: Serap A. Savari,
- Abstract要約: 基礎関数が1次元空間的に制限されたピースワイド定数関数である場合、離散的な画像登録を考える。
関数のサンプルがノイズのある場合、画像登録はデータシーケンスのアライメントとセグメンテーションを必要とする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Sampling and quantization are standard practices in signal and image processing, but a theoretical understanding of their impact is incomplete. We consider discrete image registration when the underlying function is a one-dimensional spatially-limited piecewise constant function. For ideal noiseless sampling the number of samples from each region of the support of the function generally depends on the placement of the sampling grid. Therefore, if the samples of the function are noisy, then image registration requires alignment and segmentation of the data sequences. One popular strategy for aligning images is selecting the maximum from cross-correlation template matching. To motivate more robust and accurate approaches which also address segmentation, we provide an example of a one-dimensional spatially-limited piecewise constant function for which the cross-correlation technique can perform poorly on noisy samples. While earlier approaches to improve the method involve normalization, our example suggests a novel strategy in our setting. Difference sequences, thresholding, and dynamic programming are well-known techniques in image processing. We prove that they are tools to correctly align and segment noisy data sequences under some conditions on the noise. We also address some of the potential difficulties that could arise in a more general case.
- Abstract(参考訳): サンプリングと量子化は信号と画像処理における標準的な慣行であるが、その影響に関する理論的理解は不完全である。
基礎関数が1次元空間的に制限されたピースワイド定数関数である場合、離散的な画像登録を考える。
理想的なノイズレスサンプリングでは、関数の支持領域の各領域からのサンプルの数がサンプリンググリッドの配置に依存するのが一般的である。
したがって、関数のサンプルがノイズの多い場合、画像登録はデータシーケンスのアライメントとセグメンテーションを必要とする。
画像の整列のための一般的な戦略の1つは、相互相関テンプレートマッチングから最大値を選択することである。
セグメンテーションにも対処するより堅牢で正確なアプローチを動機付けるために,クロスコリレーション手法がノイズの多いサンプルに対して不十分に作用する一次元空間制限のピースワイド定数関数の例を示す。
従来の手法の改良には正規化が伴っていたが,本例では新たな手法が提案されている。
差分シーケンス、閾値、動的プログラミングは画像処理においてよく知られた技法である。
ノイズのある条件下で、ノイズの多いデータ列を正しく整列し、セグメント化するためのツールであることが証明されている。
また、より一般的なケースで起こりうる潜在的な困難にも対処する。
関連論文リスト
- Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
科学と工学において、ゴールは、ある画像のモダリティを記述する既知のフォワードモデルから収集された少数の測定値から未知の画像を推測することである。
モチベートされたスコアベース拡散モデルはその経験的成功により、画像再構成に先立って模範の印象的な候補として現れた。
論文 参考訳(メタデータ) (2024-03-25T15:58:26Z) - Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
拡散モデル(DM)は、画像編集や復元などの応用と同様に、無条件生成において優れている。
本研究の目的は、一般化されたCTM(GCTM)を提案することによって、整合性軌道モデル(CTM)の完全なポテンシャルを解放することである。
本稿では,GCTMの設計空間について論じ,画像から画像への変換,復元,編集など,様々な画像操作タスクにおいて有効性を示す。
論文 参考訳(メタデータ) (2024-03-19T07:24:54Z) - Representing Noisy Image Without Denoising [91.73819173191076]
ラドン空間におけるフラクショナルオーダーモーメント(FMR)は、ノイズの多い画像から直接ロバストな表現を引き出すように設計されている。
従来の整数順序法とは異なり、我々の研究は特別な場合のような古典的手法を取り入れたより汎用的な設計である。
論文 参考訳(メタデータ) (2023-01-18T10:13:29Z) - A Generalist Framework for Panoptic Segmentation of Images and Videos [61.61453194912186]
我々は,タスクの帰納バイアスに頼ることなく,離散的なデータ生成問題としてパノプティクスセグメンテーションを定式化する。
単純な構造と一般的な損失関数を持つパノスコープマスクをモデル化するための拡散モデルを提案する。
本手法は,動画を(ストリーミング環境で)モデル化し,オブジェクトのインスタンスを自動的に追跡することを学ぶ。
論文 参考訳(メタデータ) (2022-10-12T16:18:25Z) - Evaluation of Dirichlet Process Gaussian Mixtures for Segmentation on
Noisy Hyperspectral Images [1.4721615285883425]
本稿では、ディリクレ過程のガウス混合モデルを用いて、ハイパースペクトル画像のセグメント化手法を提案し、評価する。
我々のモデルは、与えられたデータセットのスケールの最適な値とクラスタの数を見つけるまでパラメータを自己制御することができる。
その結果,最適なパラメータを手動で探索することの負担を回避しながら,ハイパースペクトル画像中の物体を見つける方法の可能性が示された。
論文 参考訳(メタデータ) (2022-03-05T21:44:52Z) - Semantic similarity metrics for learned image registration [10.355938901584565]
画像登録のための意味的類似度尺度を提案する。
このアプローチは、学習に基づく登録モデルの最適化を促進するデータセット固有の特徴を学習する。
自動エンコーダを用いた非監視的アプローチと、補助セグメンテーションデータを用いた半監督的アプローチの両方をトレーニングし、画像登録のための意味的特徴を抽出します。
論文 参考訳(メタデータ) (2021-04-20T15:23:58Z) - Diverse Semantic Image Synthesis via Probability Distribution Modeling [103.88931623488088]
新規な多様な意味的画像合成フレームワークを提案する。
本手法は最先端手法と比較して優れた多様性と同等の品質を実現することができる。
論文 参考訳(メタデータ) (2021-03-11T18:59:25Z) - DeepSim: Semantic similarity metrics for learned image registration [6.789370732159177]
画像登録のための意味的類似度尺度を提案する。
提案手法は,学習ベース登録モデルの最適化を促進する,データセット固有の特徴を学習する。
論文 参考訳(メタデータ) (2020-11-11T12:35:07Z) - Set Based Stochastic Subsampling [85.5331107565578]
本稿では,2段階間ニューラルサブサンプリングモデルを提案する。
画像分類,画像再構成,機能再構築,少数ショット分類など,様々なタスクにおいて,低いサブサンプリング率で関連ベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-25T07:36:47Z) - FDA: Fourier Domain Adaptation for Semantic Segmentation [82.4963423086097]
本稿では,教師なし領域適応の簡易な手法について述べる。一方の低周波スペクトルを他方と交換することにより,音源と対象分布の相違を低減できる。
本手法を意味的セグメンテーション(semantic segmentation, 意味的セグメンテーション, 意味的セグメンテーション)で説明する。
以上の結果から,より高度な手法が学習に苦しむデータにおいて,単純な手順であってもニュアンス変動を低減できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-04-11T22:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。