Context-Aware Trajectory Anomaly Detection
- URL: http://arxiv.org/abs/2410.19136v1
- Date: Thu, 24 Oct 2024 20:09:13 GMT
- Title: Context-Aware Trajectory Anomaly Detection
- Authors: Haoji Hu, Jina Kim, Jinwei Zhou, Sofia Kirsanova, JangHyeon Lee, Yao-Yi Chiang,
- Abstract summary: Trajectory anomaly detection is crucial for effective decision-making in urban and human mobility management.
We propose a context-aware anomaly detection approach that models contextual information related to trajectories.
The proposed method is based on a trajectory reconstruction framework guided by contextual factors such as agent ID and contextual POI embedding.
- Score: 12.572145062501356
- License:
- Abstract: Trajectory anomaly detection is crucial for effective decision-making in urban and human mobility management. Existing methods of trajectory anomaly detection generally focus on training a trajectory generative model and evaluating the likelihood of reconstructing a given trajectory. However, previous work often lacks important contextual information on the trajectory, such as the agent's information (e.g., agent ID) or geographic information (e.g., Points of Interest (POI)), which could provide additional information on accurately capturing anomalous behaviors. To fill this gap, we propose a context-aware anomaly detection approach that models contextual information related to trajectories. The proposed method is based on a trajectory reconstruction framework guided by contextual factors such as agent ID and contextual POI embedding. The injection of contextual information aims to improve the performance of anomaly detection. We conducted experiments in two cities and demonstrated that the proposed approach significantly outperformed existing methods by effectively modeling contextual information. Overall, this paper paves a new direction for advancing trajectory anomaly detection.
Related papers
- Trajectory Anomaly Detection with Language Models [21.401931052512595]
This paper presents a novel approach for trajectory anomaly detection using an autoregressive causal-attention model, termed LM-TAD.
By treating trajectories as sequences of tokens, our model learns the probability distributions over trajectories, enabling the identification of anomalous locations with high precision.
Our experiments demonstrate the effectiveness of LM-TAD on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-09-18T17:33:31Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
We propose a trajectory-based method TV score, which uses trajectory volatility for OOD detection in mathematical reasoning.
Our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios.
Our method can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.
arXiv Detail & Related papers (2024-05-22T22:22:25Z) - PUAD: Frustratingly Simple Method for Robust Anomaly Detection [0.0]
We argue that logical anomalies, such as the wrong number of objects, can not be well-represented by the spatial feature maps.
We propose a method that incorporates a simple out-of-distribution detection method on the feature space against state-of-the-art reconstruction-based approaches.
Our method achieves state-of-the-art performance on the MVTec LOCO AD dataset.
arXiv Detail & Related papers (2024-02-23T06:57:31Z) - Geo-Localization Based on Dynamically Weighted Factor-Graph [74.75763142610717]
Feature-based geo-localization relies on associating features extracted from aerial imagery with those detected by the vehicle's sensors.
This requires that the type of landmarks must be observable from both sources.
We present a dynamically weighted factor graph model for the vehicle's trajectory estimation.
arXiv Detail & Related papers (2023-11-13T12:44:14Z) - Learning Representation for Anomaly Detection of Vehicle Trajectories [15.20257956793474]
Predicting the future trajectories of surrounding vehicles based on their history trajectories is a critical task in autonomous driving.
Small crafted perturbations can significantly mislead the future trajectory prediction module of the ego vehicle.
We propose two novel methods for learning effective and efficient representations for online anomaly detection of vehicle trajectories.
arXiv Detail & Related papers (2023-03-09T02:48:59Z) - Spatio-Temporal Context Modeling for Road Obstacle Detection [12.464149169670735]
A data-driven context-temporal model of the driving scene is constructed with the layouts of the training data.
Obstacles are detected via state-of-the-art object detection algorithms, and the results are combined with the generated scene.
arXiv Detail & Related papers (2023-01-19T07:06:35Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
We show that road obstacle detection techniques ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases.
We leverage this by computing a scale map encoding the apparent size of a hypothetical object at every image location.
We then leverage this perspective map to generate training data by injecting onto the road synthetic objects whose size corresponds to the perspective foreshortening.
arXiv Detail & Related papers (2022-10-04T17:48:42Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.