TEAM: Topological Evolution-aware Framework for Traffic Forecasting--Extended Version
- URL: http://arxiv.org/abs/2410.19192v2
- Date: Fri, 01 Nov 2024 09:45:29 GMT
- Title: TEAM: Topological Evolution-aware Framework for Traffic Forecasting--Extended Version
- Authors: Duc Kieu, Tung Kieu, Peng Han, Bin Yang, Christian S. Jensen, Bac Le,
- Abstract summary: Topological Evolution-aware Framework (TEAM) for traffic forecasting incorporates convolution and attention.
TEAM is capable of much lower re-training costs than existing methods are without jeopardizing forecasting accuracy.
- Score: 24.544665297938437
- License:
- Abstract: Due to the global trend towards urbanization, people increasingly move to and live in cities that then continue to grow. Traffic forecasting plays an important role in the intelligent transportation systems of cities as well as in spatio-temporal data mining. State-of-the-art forecasting is achieved by deep-learning approaches due to their ability to contend with complex spatio-temporal dynamics. However, existing methods assume the input is fixed-topology road networks and static traffic time series. These assumptions fail to align with urbanization, where time series are collected continuously and road networks evolve over time. In such settings, deep-learning models require frequent re-initialization and re-training, imposing high computational costs. To enable much more efficient training without jeopardizing model accuracy, we propose the Topological Evolution-aware Framework (TEAM) for traffic forecasting that incorporates convolution and attention. This combination of mechanisms enables better adaptation to newly collected time series, while being able to maintain learned knowledge from old time series. TEAM features a continual learning module based on the Wasserstein metric that acts as a buffer that can identify the most stable and the most changing network nodes. Then, only data related to stable nodes is employed for re-training when consolidating a model. Further, only data of new nodes and their adjacent nodes as well as data pertaining to changing nodes are used to re-train the model. Empirical studies with two real-world traffic datasets offer evidence that TEAM is capable of much lower re-training costs than existing methods are, without jeopardizing forecasting accuracy.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Robust Traffic Forecasting against Spatial Shift over Years [11.208740750755025]
We investigate state-temporal-the-art models using newly proposed traffic OOD benchmarks.
We find that these models experience significant decline in performance.
We propose a novel of Mixture Experts framework, which learns a set of graph generators during training and combines them to generate new graphs.
Our method is both parsimonious and efficacious, and can be seamlessly integrated into anytemporal model.
arXiv Detail & Related papers (2024-10-01T03:49:29Z) - Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting [13.309018047313801]
Traffic forecasting has emerged as a crucial research area in the development of smart cities.
Recent advancements in network modeling for most-temporal correlations are starting to see diminishing returns in performance.
To tackle these challenges, we introduce the Spatio-Temporal Graph Transformer (STGormer)
We design two straightforward yet effective spatial encoding methods based on the structure and integrate time position into the vanilla transformer to capture-temporal traffic patterns.
arXiv Detail & Related papers (2024-08-20T13:18:21Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Improving Demand Forecasting in Open Systems with Cartogram-Enhanced Deep Learning [2.684349361878955]
In this study, we propose a deep learning framework to predict rental and return patterns by leveraging cartogram approaches.
We apply this method to public bicycle rental-and-return data in Seoul, South Korea.
arXiv Detail & Related papers (2024-03-24T07:29:12Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Learning Fast and Slow for Online Time Series Forecasting [76.50127663309604]
Fast and Slow learning Networks (FSNet) is a holistic framework for online time-series forecasting.
FSNet balances fast adaptation to recent changes and retrieving similar old knowledge.
Our code will be made publicly available.
arXiv Detail & Related papers (2022-02-23T18:23:07Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
We propose a model to predict traffic speed under the impact of construction work.
The model is based on the powerful attention-based,temporal graph convolution architecture but utilizes various channels to integrate different sources of information.
The model is evaluated on two benchmark datasets and a novel dataset we have collected over the bustling roadway's corner in Northern Virginia.
arXiv Detail & Related papers (2021-10-04T16:07:37Z) - Traffic congestion anomaly detection and prediction using deep learning [6.370406399003785]
Congestion prediction is a major priority for traffic management centres around the world to ensure timely incident response handling.
The increasing amounts of generated traffic data have been used to train machine learning predictors for traffic, but this is a challenging task due to inter-dependencies of traffic flow both in time and space.
We show that our deep learning models consistently outperform traditional methods, and we conduct a comparative analysis of the optimal time horizon of historical data required to predict traffic flow at different time points in the future.
arXiv Detail & Related papers (2020-06-23T08:49:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.