論文の概要: The Reopening of Pandora's Box: Analyzing the Role of LLMs in the Evolving Battle Against AI-Generated Fake News
- arxiv url: http://arxiv.org/abs/2410.19250v1
- Date: Fri, 25 Oct 2024 01:58:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:37:00.987926
- Title: The Reopening of Pandora's Box: Analyzing the Role of LLMs in the Evolving Battle Against AI-Generated Fake News
- Title(参考訳): Pandoraのボックス再オープン:AIが生み出すフェイクニュースとの戦いにおけるLCMの役割の分析
- Authors: Xinyu Wang, Wenbo Zhang, Sai Koneru, Hangzhi Guo, Bonam Mingole, S. Shyam Sundar, Sarah Rajtmajer, Amulya Yadav,
- Abstract要約: 大規模言語モデル(LLM)は、大規模な偽ニュースを生成する。
LLMは実際のニュースを検出するのに人間よりも68%効果的である。
偽ニュース検出では、LLMと人間のパフォーマンスはいまだに同等である。
- 参考スコア(独自算出の注目度): 30.759761034237563
- License:
- Abstract: With the rise of AI-generated content spewed at scale from large language models (LLMs), genuine concerns about the spread of fake news have intensified. The perceived ability of LLMs to produce convincing fake news at scale poses new challenges for both human and automated fake news detection systems. To address this gap, this work presents the findings from a university-level competition which aimed to explore how LLMs can be used by humans to create fake news, and to assess the ability of human annotators and AI models to detect it. A total of 110 participants used LLMs to create 252 unique fake news stories, and 84 annotators participated in the detection tasks. Our findings indicate that LLMs are ~68% more effective at detecting real news than humans. However, for fake news detection, the performance of LLMs and humans remains comparable (~60% accuracy). Additionally, we examine the impact of visual elements (e.g., pictures) in news on the accuracy of detecting fake news stories. Finally, we also examine various strategies used by fake news creators to enhance the credibility of their AI-generated content. This work highlights the increasing complexity of detecting AI-generated fake news, particularly in collaborative human-AI settings.
- Abstract(参考訳): 大規模言語モデル(LLM)からAI生成コンテンツが大規模に流出するにつれ、偽ニュースの普及に対する真の懸念が高まっている。
LLMが疑わしいフェイクニュースを大規模に生成する能力は、人間と自動化されたフェイクニュース検知システムの両方に新たな課題をもたらす。
このギャップに対処するために、この研究は、人間の偽ニュース作成にLLMをどのように使用できるかを探究し、人間のアノテータやAIモデルがそれを検出する能力を評価することを目的とした、大学レベルのコンペティションの結果を提示する。
110人の参加者がLLMを使用して252のユニークなフェイクニュースを作成し、84人のアノテータが検出タスクに参加した。
以上の結果から,LLMは実ニュースの検出に人間よりも約68%有効であることが示唆された。
しかし、フェイクニュース検出では、LLMと人間のパフォーマンスは同等(~60%の精度)である。
さらに,ニュース中の視覚要素(例えば画像)が偽ニュースの検出精度に与える影響についても検討した。
最後に、フェイクニュースクリエーターがAI生成コンテンツの信頼性を高めるために使用する様々な戦略についても検討する。
この研究は、AIが生成するフェイクニュースを検出する複雑さの増大を強調している。
関連論文リスト
- From Deception to Detection: The Dual Roles of Large Language Models in Fake News [0.20482269513546458]
フェイクニュースは、情報エコシステムと公衆信頼の整合性に重大な脅威をもたらす。
LLM(Large Language Models)の出現は、フェイクニュースとの戦いを変革する大きな可能性を秘めている。
本稿では,偽ニュースに効果的に対処する各種LLMの能力について検討する。
論文 参考訳(メタデータ) (2024-09-25T22:57:29Z) - Seeing Through AI's Lens: Enhancing Human Skepticism Towards LLM-Generated Fake News [0.38233569758620056]
本稿は,人間とLLMで作成する物品を個人が識別する簡単なマーカーを解明することを目的としている。
次に、情報理論とエントロピー原理に基づいて、エントロピーシフトオーサリングシグナチャ(ESAS)と呼ばれるメトリクスを考案する。
提案されたESASは、記事の著者の識別に関する関連性に基づいて、POSタグのような用語やエンティティをニュース記事にランク付けする。
論文 参考訳(メタデータ) (2024-06-20T06:02:04Z) - Exploring the Deceptive Power of LLM-Generated Fake News: A Study of Real-World Detection Challenges [21.425647152424585]
条件付き変分オートエンコーダライズプロンプト(VLPrompt)と呼ばれる強力なフェイクニュース攻撃手法を提案する。
現行のメソッドとは異なり、VLPromptはコンテキストコヒーレンスを維持しながら追加のデータ収集を不要にする。
さまざまな検出方法や新しい人間の研究指標を含む実験を行い,その性能をデータセット上で評価した。
論文 参考訳(メタデータ) (2024-03-27T04:39:18Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Harnessing the Power of LLMs: Evaluating Human-AI Text Co-Creation
through the Lens of News Headline Generation [58.31430028519306]
本研究は, LLMを書き込みに最も有効に活用する方法と, これらのモデルとのインタラクションが, 書き込みプロセスにおけるオーナシップや信頼感にどのように影響するかを考察する。
LLMだけで十分なニュースの見出しを生成することができるが、平均すると、望ましくないモデルのアウトプットを修正するには人間による制御が必要である。
論文 参考訳(メタデータ) (2023-10-16T15:11:01Z) - Fake News Detectors are Biased against Texts Generated by Large Language
Models [39.36284616311687]
フェイクニュースの拡散は、信頼を弱め、社会への脅威を訴える重要な課題として浮上している。
本稿では,人間の書き起こしとLLM生成の両方の誤情報を含むシナリオにおいて,偽ニュース検知器を評価するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-09-15T18:04:40Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。