論文の概要: DECADE: Towards Designing Efficient-yet-Accurate Distance Estimation Modules for Collision Avoidance in Mobile Advanced Driver Assistance Systems
- arxiv url: http://arxiv.org/abs/2410.19336v1
- Date: Fri, 25 Oct 2024 06:40:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:36:36.149059
- Title: DECADE: Towards Designing Efficient-yet-Accurate Distance Estimation Modules for Collision Avoidance in Mobile Advanced Driver Assistance Systems
- Title(参考訳): DECADE: 移動型先進運転支援システムにおける衝突回避のための効率的な距離推定モジュールの設計に向けて
- Authors: Muhammad Zaeem Shahzad, Muhammad Abdullah Hanif, Muhammad Shafique,
- Abstract要約: 本稿では,距離推定モデルであるDECADEについて述べる。
これらのモジュールを任意の検出器にアタッチして物体検出を高速な距離推定で拡張できることを実証する。
- 参考スコア(独自算出の注目度): 5.383130566626935
- License:
- Abstract: The proliferation of smartphones and other mobile devices provides a unique opportunity to make Advanced Driver Assistance Systems (ADAS) accessible to everyone in the form of an application empowered by low-cost Machine/Deep Learning (ML/DL) models to enhance road safety. For the critical feature of Collision Avoidance in Mobile ADAS, lightweight Deep Neural Networks (DNN) for object detection exist, but conventional pixel-wise depth/distance estimation DNNs are vastly more computationally expensive making them unsuitable for a real-time application on resource-constrained devices. In this paper, we present a distance estimation model, DECADE, that processes each detector output instead of constructing pixel-wise depth/disparity maps. In it, we propose a pose estimation DNN to estimate allocentric orientation of detections to supplement the distance estimation DNN in its prediction of distance using bounding box features. We demonstrate that these modules can be attached to any detector to extend object detection with fast distance estimation. Evaluation of the proposed modules with attachment to and fine-tuning on the outputs of the YOLO object detector on the KITTI 3D Object Detection dataset achieves state-of-the-art performance with 1.38 meters in Mean Absolute Error and 7.3% in Mean Relative Error in the distance range of 0-150 meters. Our extensive evaluation scheme not only evaluates class-wise performance, but also evaluates range-wise accuracy especially in the critical range of 0-70m.
- Abstract(参考訳): スマートフォンやその他のモバイルデバイスの普及は、道路安全性を高めるために低コストの機械学習(ML/DL)モデルによって強化されたアプリケーションという形で、高度なドライバ支援システム(ADAS)を誰でも利用できるようにするユニークな機会を提供する。
モバイルADASにおける衝突回避の重要な特徴として、オブジェクト検出のための軽量ディープニューラルネットワーク(DNN)が存在するが、従来のピクセル単位の深度/距離推定DNNは計算コストが大幅に高く、リソース制約のあるデバイスでのリアルタイムアプリケーションには適さない。
本稿では,距離推定モデルであるDECADEを提案する。
そこで本論文では,検出のアロセント方向を推定するポーズ推定DNNを提案し,境界ボックス特徴を用いた距離予測における距離推定DNNを補完する。
これらのモジュールを任意の検出器にアタッチして物体検出を高速な距離推定で拡張できることを実証する。
KITTIの3Dオブジェクト検出データセット上でのYOLOオブジェクト検出器の出力に対するアタッチメントと微調整によるモジュールの評価は,平均絶対誤差が1.38m,平均相対誤差が7.3%の最先端性能を実現している。
本手法は,クラスワイド性能の評価だけでなく,特に0~70mの臨界範囲における範囲ワイド精度の評価も行う。
関連論文リスト
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Ensuring UAV Safety: A Vision-only and Real-time Framework for Collision Avoidance Through Object Detection, Tracking, and Distance Estimation [16.671696289301625]
本稿では,光学センサを用いた非協調航空車両の検出・追跡・距離推定のためのディープラーニングフレームワークを提案する。
本研究では,単眼カメラの入力のみを用いて,検出された空中物体の距離情報をリアルタイムで推定する手法を提案する。
論文 参考訳(メタデータ) (2024-05-10T18:06:41Z) - Towards Long-Range 3D Object Detection for Autonomous Vehicles [4.580520623362462]
長距離での3次元物体検出は、自動運転車の安全性と効率を確保するために不可欠である。
芸術的LiDARに基づく手法の現在のほとんどの状態は、長距離でのスパーシリティのため、範囲が限られている。
我々は,現在のLiDARを用いた3D検出器の長距離性能を改善する2つの方法を検討した。
論文 参考訳(メタデータ) (2023-10-07T13:39:46Z) - An Empirical Analysis of Range for 3D Object Detection [70.54345282696138]
本稿では,長距離検出データセットArgoverse 2.0を用いた遠距離3次元検出の実験的検討を行った。
近接場LiDARの測定は、小さなボクセルによって密度が高く最適に符号化され、遠距離場の測定は疎く、大きなボクセルで符号化されている。
本研究では,33%の効率向上と3.2%のCDSの精度向上を図った。
論文 参考訳(メタデータ) (2023-08-08T05:29:26Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - RealNet: Combining Optimized Object Detection with Information Fusion
Depth Estimation Co-Design Method on IoT [2.9275056713717285]
本稿では,モデル流線形認識アルゴリズム,深度推定アルゴリズム,情報融合を組み合わせた共同設計手法を提案する。
本稿では,リアルタイム要求の高いモバイルプラットフォームに適した手法を提案する。
論文 参考訳(メタデータ) (2022-04-24T08:35:55Z) - Anchor Retouching via Model Interaction for Robust Object Detection in
Aerial Images [15.404024559652534]
本稿では,新しいトレーニングサンプルジェネレータを構築するために,動的拡張アンカー(DEA)ネットワークを提案する。
提案手法は,適度な推論速度とトレーニングの計算オーバーヘッドを伴って,最先端の性能を精度良く達成する。
論文 参考訳(メタデータ) (2021-12-13T14:37:20Z) - Pattern-Aware Data Augmentation for LiDAR 3D Object Detection [7.394029879643516]
本稿では,LiDARの特性に基づいてオブジェクトの点群をダウンサンプリングするデータ拡張手法である,パターン認識基底真理サンプリングを提案する。
自動車クラスにおけるPV-RCNNの性能は,25m以上の距離で分割したKITTI検証で0.7%以上向上した。
論文 参考訳(メタデータ) (2021-11-30T19:14:47Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - Achieving Real-Time LiDAR 3D Object Detection on a Mobile Device [53.323878851563414]
本稿では,強化学習技術を用いたネットワーク拡張とpruning検索を組み込んだコンパイラ対応統一フレームワークを提案する。
具体的には,リカレントニューラルネットワーク(RNN)を用いて,ネットワークの強化とプルーニングの両面での統一的なスキームを自動で提供する。
提案手法は,モバイルデバイス上でのリアルタイム3次元物体検出を実現する。
論文 参考訳(メタデータ) (2020-12-26T19:41:15Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。