論文の概要: An Auditing Test To Detect Behavioral Shift in Language Models
- arxiv url: http://arxiv.org/abs/2410.19406v1
- Date: Fri, 25 Oct 2024 09:09:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:36:09.316987
- Title: An Auditing Test To Detect Behavioral Shift in Language Models
- Title(参考訳): 言語モデルにおける行動変化検出のための監査テスト
- Authors: Leo Richter, Xuanli He, Pasquale Minervini, Matt J. Kusner,
- Abstract要約: 本稿では,言語モデルにおける連続的行動シフト監査(BSA)手法を提案する。
BSAはモデル世代のみを通して行動シフトを検出する。
このテストは、数百の例を使って、行動分布の有意義な変化を検出することができる。
- 参考スコア(独自算出の注目度): 28.52295230939529
- License:
- Abstract: As language models (LMs) approach human-level performance, a comprehensive understanding of their behavior becomes crucial. This includes evaluating capabilities, biases, task performance, and alignment with societal values. Extensive initial evaluations, including red teaming and diverse benchmarking, can establish a model's behavioral profile. However, subsequent fine-tuning or deployment modifications may alter these behaviors in unintended ways. We present a method for continual Behavioral Shift Auditing (BSA) in LMs. Building on recent work in hypothesis testing, our auditing test detects behavioral shifts solely through model generations. Our test compares model generations from a baseline model to those of the model under scrutiny and provides theoretical guarantees for change detection while controlling false positives. The test features a configurable tolerance parameter that adjusts sensitivity to behavioral changes for different use cases. We evaluate our approach using two case studies: monitoring changes in (a) toxicity and (b) translation performance. We find that the test is able to detect meaningful changes in behavior distributions using just hundreds of examples.
- Abstract(参考訳): 言語モデル(LM)が人間レベルのパフォーマンスに近づくにつれ、その振る舞いを包括的に理解することが重要である。
これには、能力、バイアス、タスクパフォーマンス、社会的価値との整合性の評価が含まれる。
レッドチームや多様なベンチマークを含む大規模な初期評価は、モデルの行動プロファイルを確立することができる。
しかし、その後の微調整や展開の変更は、意図しない方法でこれらの振る舞いを変える可能性がある。
LMにおける連続的行動シフト監査(BSA)手法を提案する。
仮説テストにおける最近の研究に基づいて,我々の監査テストはモデル生成のみによる行動変化を検出する。
本試験では,ベースラインモデルからのモデル生成と精査中のモデル生成を比較し,偽陽性を制御しながら変化検出を理論的に保証する。
テストでは、異なるユースケースに対する行動の変化に対する感度を調整する、設定可能な許容パラメータが特徴である。
2つのケーススタディによるアプローチの評価 : 変化のモニタリング
a)毒性と毒性
(b)翻訳性能。
このテストは、数百の例を使って、行動分布の有意義な変化を検出することができる。
関連論文リスト
- CONTESTS: a Framework for Consistency Testing of Span Probabilities in Language Models [16.436592723426305]
単語スパンに関節確率を割り当てる異なる方法で、言語モデルが同じ値を生成するかどうかは不明である。
我々の研究はConTestSという新しいフレームワークを導入し、交換可能な完了順序と条件付き順序でスコアの整合性を評価する統計的テストを含む。
論文 参考訳(メタデータ) (2024-09-30T06:24:43Z) - DOTA: Distributional Test-Time Adaptation of Vision-Language Models [52.98590762456236]
トレーニングフリーテスト時動的アダプタ(TDA)は、この問題に対処するための有望なアプローチである。
単体テスト時間適応法(Dota)の簡易かつ効果的な方法を提案する。
Dotaは継続的にテストサンプルの分布を推定し、モデルがデプロイメント環境に継続的に適応できるようにします。
論文 参考訳(メタデータ) (2024-09-28T15:03:28Z) - Automating Behavioral Testing in Machine Translation [9.151054827967933]
本稿では,機械翻訳モデルの振る舞いをテストするために,大規模言語モデルを用いてソース文を生成することを提案する。
MTモデルが一致した候補集合を通して期待される振る舞いを示すかどうかを検証することができる。
本研究の目的は,人的労力を最小限に抑えながら,MTシステムの動作試験を実践することである。
論文 参考訳(メタデータ) (2023-09-05T19:40:45Z) - Cross-functional Analysis of Generalisation in Behavioural Learning [4.0810783261728565]
本稿では,異なるレベルの次元をまたいだ一般化を考慮した行動学習の分析手法であるBluGAを紹介する。
集計スコアは、目に見えない機能(または過剰適合)への一般化を測定する
論文 参考訳(メタデータ) (2023-05-22T11:54:19Z) - Checking HateCheck: a cross-functional analysis of behaviour-aware
learning for hate speech detection [4.0810783261728565]
本稿では,ヘイトスピーチ検出システムのための機能テストスイートであるHateCheckを用いた微調整方式について検討する。
テストケースのカテゴリを保持して,HateCheckのさまざまな構成に関するモデルをトレーニングし,評価する。
微調整処理により,保持機能と同一性群の分類精度が向上した。
しかし, 保留機能クラスやヘイトスピーチ検出データの性能は低下し, 一般化は多種多様であった。
論文 参考訳(メタデータ) (2022-04-08T13:03:01Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
テストタイム適応は、トレーニングとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
信頼性および非冗長なサンプルを同定するためのアクティブなサンプル選択基準を提案する。
また、重要なモデルパラメータを劇的な変化から制約するFisher regularizerを導入します。
論文 参考訳(メタデータ) (2022-04-06T06:39:40Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
テスト時間ロバスト化の問題、すなわちモデルロバスト性を改善するためにテストインプットを用いて検討する。
最近の先行研究ではテスト時間適応法が提案されているが、それぞれ追加の仮定を導入している。
モデルが確率的で適応可能な任意のテスト環境で使用できるシンプルなアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-18T17:55:11Z) - Empowering Language Understanding with Counterfactual Reasoning [141.48592718583245]
本稿では,反現実的思考を模倣した反現実的推論モデルを提案する。
特に,各実例に対して代表的対実サンプルを生成する生成モジュールを考案し,その対実サンプルと実例サンプルを比較してモデル予測を振り返るレトロスペクティブモジュールを考案した。
論文 参考訳(メタデータ) (2021-06-06T06:36:52Z) - Pair the Dots: Jointly Examining Training History and Test Stimuli for
Model Interpretability [44.60486560836836]
モデルからの予測は、学習履歴とテスト刺激の組み合わせによって行われる。
モデルの予測を解釈する既存の方法は、テスト刺激または学習履歴の1つの側面しかキャプチャできない。
本研究では,学習履歴とテスト刺激を共同で調べることで,モデルの予測を解釈しやすくするための,効率的かつ異なるアプローチを提案する。
論文 参考訳(メタデータ) (2020-10-14T10:45:01Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。