論文の概要: EDGE: Enhanced Grounded GUI Understanding with Enriched Multi-Granularity Synthetic Data
- arxiv url: http://arxiv.org/abs/2410.19461v1
- Date: Fri, 25 Oct 2024 10:46:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:36:45.361692
- Title: EDGE: Enhanced Grounded GUI Understanding with Enriched Multi-Granularity Synthetic Data
- Title(参考訳): EDGE: リッチなマルチグラニュラリティ合成データによる基盤GUI理解の強化
- Authors: Xuetian Chen, Hangcheng Li, Jiaqing Liang, Sihang Jiang, Deqing Yang,
- Abstract要約: 本稿では,大規模視覚言語モデル(LVLM)のGUI理解と対話能力を,データ駆動型アプローチにより向上することを目的とする。
本稿では,Web上のWebページから大規模で粒度の高いトレーニングデータを自動的に生成する汎用データ合成フレームワークEDGEを提案する。
提案手法は,手動アノテーションへの依存を著しく低減し,研究者がWeb上で利用可能な膨大な公開リソースを活用して作業を進めることを可能にする。
- 参考スコア(独自算出の注目度): 15.801018643716437
- License:
- Abstract: Autonomous agents operating on the graphical user interfaces (GUIs) of various applications hold immense practical value. Unlike the large language model (LLM)-based methods which rely on structured texts and customized backends, the approaches using large vision-language models (LVLMs) are more intuitive and adaptable as they can visually perceive and directly interact with screens, making them indispensable in general scenarios without text metadata and tailored backends. Given the lack of high-quality training data for GUI-related tasks in existing work, this paper aims to enhance the GUI understanding and interacting capabilities of LVLMs through a data-driven approach. We propose EDGE, a general data synthesis framework that automatically generates large-scale, multi-granularity training data from webpages across the Web. Evaluation results on various GUI and agent benchmarks demonstrate that the model trained with the dataset generated through EDGE exhibits superior webpage understanding capabilities, which can then be easily transferred to previously unseen desktop and mobile environments. Our approach significantly reduces the dependence on manual annotations, empowering researchers to harness the vast public resources available on the Web to advance their work. Our source code, the dataset and the model are available at https://anonymous.4open.science/r/EDGE-1CDB.
- Abstract(参考訳): 様々なアプリケーションのグラフィカルユーザインタフェース(GUI)で動作する自律エージェントは、非常に実用的な価値を持っている。
構造化されたテキストとカスタマイズされたバックエンドに依存する大規模言語モデル(LLM)ベースの手法とは異なり、大きな視覚言語モデル(LVLM)を用いたアプローチは、視覚的に知覚され、スクリーンと直接対話できるため、テキストメタデータやカスタマイズされたバックエンドなしで一般的なシナリオでは不可欠である。
既存の作業におけるGUI関連タスクのための高品質なトレーニングデータが欠如していることを踏まえ、本論文は、データ駆動アプローチによるLVLMのGUI理解と対話能力を向上することを目的としている。
本稿では,Web上のWebページから大規模で粒度の高いトレーニングデータを自動的に生成する汎用データ合成フレームワークEDGEを提案する。
各種GUIおよびエージェントベンチマークによる評価結果から、EDGEによって生成されたデータセットでトレーニングされたモデルは、優れたWebページ理解能力を示し、これまで見つからなかったデスクトップやモバイル環境に簡単に移行できることを示した。
提案手法は,手動アノテーションへの依存を著しく低減し,研究者がWeb上で利用可能な膨大な公開リソースを活用して作業を進めることを可能にする。
ソースコード、データセット、モデルはhttps://anonymous.4open.science/r/EDGE-1CDB.comで公開されています。
関連論文リスト
- Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)の統合は、有望な技術パラダイムとして現れている。
データ品質を根本的に向上させるために、リッチなセマンティックコンテキストを持つグラフ記述テキストを活用します。
この研究は、グラフ学習方法論の進歩を目指す研究者や実践者にとって、基礎的な参考となる。
論文 参考訳(メタデータ) (2024-12-17T01:41:17Z) - Iris: Breaking GUI Complexity with Adaptive Focus and Self-Refining [67.87810796668981]
インフォメーション・インフォメーション・インフォメーション・クロッピング(ISC)と自己精製デュアルラーニング(SRDL)
Irisは850KのGUIアノテーションだけで、複数のベンチマークで最先端のパフォーマンスを実現している。
これらの改善は、WebとOSエージェントの両方の下流タスクで大幅に向上した。
論文 参考訳(メタデータ) (2024-12-13T18:40:10Z) - Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction [69.57190742976091]
自律型GUIエージェントのための統合視覚ベースのフレームワークであるAguvisを紹介する。
提案手法は,画像に基づく観察と,自然言語の接地命令を視覚要素に活用する。
これまでの作業の限界に対処するため、モデル内に明確な計画と推論を統合する。
論文 参考訳(メタデータ) (2024-12-05T18:58:26Z) - Large Language Model-Brained GUI Agents: A Survey [42.82362907348966]
マルチモーダルモデルはGUI自動化の新しい時代を支えてきた。
彼らは自然言語理解、コード生成、視覚処理において例外的な能力を示した。
これらのエージェントはパラダイムシフトを表しており、ユーザーは単純な会話コマンドで複雑なマルチステップタスクを実行できる。
論文 参考訳(メタデータ) (2024-11-27T12:13:39Z) - ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
グラフィカルユーザインタフェース(GUI)アシスタントの構築は、人間のワークフロー生産性を向上させるための大きな約束である。
デジタルワールドにおける視覚言語アクションモデル、すなわちShowUIを開発し、以下のイノベーションを特徴とする。
256Kデータを使用した軽量な2BモデルであるShowUIは、ゼロショットのスクリーンショットグラウンドで75.1%の精度を実現している。
論文 参考訳(メタデータ) (2024-11-26T14:29:47Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
本稿では,視覚に基づく制御ポリシを用いて,ロバストな閉ループ性能を実現するために必要な最小限のデータ要件とアーキテクチャ適応について検討する。
この知見はFlex (Fly-lexically) で合成され,VLM(Vision Language Models) をフリーズしたパッチワイド特徴抽出器として利用するフレームワークである。
本研究では,本手法が4段階のフライ・トゥ・ターゲットタスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2024-10-16T19:59:31Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。