論文の概要: AgentTrek: Agent Trajectory Synthesis via Guiding Replay with Web Tutorials
- arxiv url: http://arxiv.org/abs/2412.09605v2
- Date: Mon, 03 Mar 2025 18:59:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:10:40.407468
- Title: AgentTrek: Agent Trajectory Synthesis via Guiding Replay with Web Tutorials
- Title(参考訳): AgentTrek: Webチュートリアルによるリプレイ誘導によるエージェント軌道合成
- Authors: Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, Tao Yu,
- Abstract要約: 既存のアプローチは高価な人間のアノテーションに依存しており、大規模には持続不可能である。
本稿では,Webエージェントトラジェクトリを生成するスケーラブルなデータ合成パイプラインであるAgentTrekを提案する。
完全に自動化されたアプローチは、データ収集コストを大幅に削減し、人間のアノテータを使わずに、高品質な軌道を0.55ドルに抑えることができます。
- 参考スコア(独自算出の注目度): 53.376263056033046
- License:
- Abstract: Graphical User Interface (GUI) agents can automate complex tasks across digital environments, but their development is hindered by the scarcity of high-quality trajectory data for training. Existing approaches rely on expensive human annotation, making them unsustainable at scale. We propose AgentTrek, a scalable data synthesis pipeline that generates web agent trajectories by leveraging publicly available tutorials. Our three-stage method: (1) automatically harvests and filters tutorial-like texts from the internet using a specialized classification model, (2) transforms these texts into structured task specifications with step-by-step instructions, and (3) employs a visual-language model (VLM) agent to execute these instructions in real environments, while a VLM-based evaluator verifies trajectory correctness. The synthesized trajectories encompass multiple modalities, including text-based HTML observations with function-calling API actions, and vision-based screenshot observations with pixel-level actions. This multimodal data, enriched with chain-of-thought reasoning, enables agents to achieve state-of-the-art performance on both textual web browsing benchmarks (e.g., WebArena) and visual web grounding and browsing benchmarks (e.g., ScreenSpot Web and Multimodal Mind2Web). Furthermore, our fully automated approach significantly reduces data collection costs, achieving a cost of just $0.55 per high-quality trajectory without human annotators. Our work demonstrates that guided replay using web tutorials is a practical and scalable strategy for training advanced GUI agents, paving the way for more capable and autonomous digital assistants.
- Abstract(参考訳): グラフィカルユーザインタフェース(GUI)エージェントは、デジタル環境全体にわたる複雑なタスクを自動化することができるが、それらの開発は、トレーニングのための高品質なトラジェクトリデータの不足によって妨げられる。
既存のアプローチは高価な人間のアノテーションに依存しており、大規模には持続不可能である。
本稿では,Webエージェントトラジェクトリを生成するスケーラブルなデータ合成パイプラインであるAgentTrekを提案する。
この3段階の手法では,(1)特定の分類モデルを用いてインターネットからチュートリアル風のテキストを自動的に抽出・フィルタリングし,(2)ステップバイステップの指示でこれらのテキストを構造化タスク仕様に変換し,(3)ビジュアル言語モデル(VLM)エージェントを用いて実環境下でこれらの命令を実行する。
合成トラジェクトリは、関数呼び出しAPIアクションによるテキストベースのHTML観察や、ピクセルレベルのアクションによる視覚ベースのスクリーンショット観察など、複数のモダリティを含んでいる。
このマルチモーダルデータはチェーン・オブ・シークレットの推論に富んだもので、エージェントはテキストWebブラウジングベンチマーク(例:WebArena)とビジュアルWebグラウンドとブラウジングベンチマーク(例:ScreenSpot WebとMultimodal Mind2Web)の両方で最先端のパフォーマンスを達成することができる。
さらに、完全に自動化されたアプローチはデータ収集コストを大幅に削減し、人間のアノテータを使わずに高品質な軌道を0.55ドルに抑えることができる。
我々の研究は、Webチュートリアルを使ったガイド付きリプレイは、高度なGUIエージェントを訓練するための実用的でスケーラブルな戦略であり、より有能で自律的なデジタルアシスタントへの道を開くことを実証している。
関連論文リスト
- OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis [55.390060529534644]
グラフィカルユーザインタフェース(GUI)エージェントのための新しいデータ合成パイプラインであるOS-Genesisを提案する。
事前に定義されたタスクに頼る代わりに、OS-Genesisはエージェントがまず環境を認識し、ステップワイドなインタラクションを実行することを可能にする。
次に、生成された軌道の品質を保証するために軌道報酬モデルを用いる。
論文 参考訳(メタデータ) (2024-12-27T16:21:58Z) - Iris: Breaking GUI Complexity with Adaptive Focus and Self-Refining [67.87810796668981]
インフォメーション・インフォメーション・インフォメーション・クロッピング(ISC)と自己精製デュアルラーニング(SRDL)
Irisは850KのGUIアノテーションだけで、複数のベンチマークで最先端のパフォーマンスを実現している。
これらの改善は、WebとOSエージェントの両方の下流タスクで大幅に向上した。
論文 参考訳(メタデータ) (2024-12-13T18:40:10Z) - Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction [69.57190742976091]
自律型GUIエージェントのための統合視覚ベースのフレームワークであるAguvisを紹介する。
提案手法は,画像に基づく観察と,自然言語の接地命令を視覚要素に活用する。
これまでの作業の限界に対処するため、モデル内に明確な計画と推論を統合する。
論文 参考訳(メタデータ) (2024-12-05T18:58:26Z) - Large Language Model-Brained GUI Agents: A Survey [42.82362907348966]
マルチモーダルモデルはGUI自動化の新しい時代を支えてきた。
彼らは自然言語理解、コード生成、視覚処理において例外的な能力を示した。
これらのエージェントはパラダイムシフトを表しており、ユーザーは単純な会話コマンドで複雑なマルチステップタスクを実行できる。
論文 参考訳(メタデータ) (2024-11-27T12:13:39Z) - EDGE: Enhanced Grounded GUI Understanding with Enriched Multi-Granularity Synthetic Data [15.801018643716437]
本稿では,大規模視覚言語モデル(LVLM)のGUI理解と対話能力を,データ駆動型アプローチにより向上することを目的とする。
本稿では,Web上のWebページから大規模で粒度の高いトレーニングデータを自動的に生成する汎用データ合成フレームワークEDGEを提案する。
提案手法は,手動アノテーションへの依存を著しく低減し,研究者がWeb上で利用可能な膨大な公開リソースを活用して作業を進めることを可能にする。
論文 参考訳(メタデータ) (2024-10-25T10:46:17Z) - Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents [20.08996257335876]
環境を視覚的に完全に知覚し,GUI上でのピクセルレベルの操作を直接行う,GUIエージェントのためのヒューマンライクなエボディメントを提唱する。
これまでに10MのGUI要素と参照式を1.3Mのスクリーンショット上に収めた、GUIの視覚的接地のための最大のデータセットを収集しました。
ウェブベースの合成データとLLaVAアーキテクチャの若干の適応を含む簡単なレシピは、このような視覚的接地モデルのトレーニングに驚くほど効果的であることを示す。
論文 参考訳(メタデータ) (2024-10-07T17:47:50Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z) - ASSISTGUI: Task-Oriented Desktop Graphical User Interface Automation [30.693616802332745]
本稿では,ユーザが要求するタスクに応じて,Windowsプラットフォーム上でマウスとキーボードを操作することができるかどうかを評価するための新しいベンチマーク,AssistGUIを提案する。
本稿では,AIエージェントによって駆動される高度なGUIを組み込んだ高度なアクタ・クリティカル・フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-20T15:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。