TRADE: Transfer of Distributions between External Conditions with Normalizing Flows
- URL: http://arxiv.org/abs/2410.19492v1
- Date: Fri, 25 Oct 2024 11:49:40 GMT
- Title: TRADE: Transfer of Distributions between External Conditions with Normalizing Flows
- Authors: Stefan Wahl, Armand Rousselot, Felix Draxler, Ullrich Köthe,
- Abstract summary: We introduce TRADE, which overcomes limitations by formulating the learning process as a boundary value problem.
We demonstrate that it achieves excellent results in a wide range of applications, ranging from Bayesian inference and molecular simulations to physical lattice models.
- Score: 7.950853733690331
- License:
- Abstract: Modeling distributions that depend on external control parameters is a common scenario in diverse applications like molecular simulations, where system properties like temperature affect molecular configurations. Despite the relevance of these applications, existing solutions are unsatisfactory as they require severely restricted model architectures or rely on backward training, which is prone to unstable training. We introduce TRADE, which overcomes these limitations by formulating the learning process as a boundary value problem. By initially training the model for a specific condition using either i.i.d. samples or backward KL training, we establish a boundary distribution. We then propagate this information across other conditions using the gradient of the unnormalized density with respect to the external parameter. This formulation, akin to the principles of physics-informed neural networks, allows us to efficiently learn parameter-dependent distributions without restrictive assumptions. Experimentally, we demonstrate that TRADE achieves excellent results in a wide range of applications, ranging from Bayesian inference and molecular simulations to physical lattice models.
Related papers
- Constrained Diffusion Models via Dual Training [80.03953599062365]
We develop constrained diffusion models based on desired distributions informed by requirements.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning.
Despite the empirical success, theory of conditional diffusion models is largely missing.
This paper bridges the gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models.
arXiv Detail & Related papers (2024-03-18T17:08:24Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
This work extends the reach of generative models into physical problem domains.
We present an efficient approach to promote consistency with the underlying PDE.
We showcase the potential and versatility of score-based generative models in various physics tasks.
arXiv Detail & Related papers (2023-12-16T19:56:10Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
We propose a learning framework to extract, from molecular dynamics data, an optimal Linear Peridynamic Solid model.
We provide sufficient well-posedness conditions for discretized LPS models with sign-changing influence functions.
This framework guarantees that the resulting model is mathematically well-posed, physically consistent, and that it generalizes well to settings that are different from the ones used during training.
arXiv Detail & Related papers (2021-08-04T07:07:47Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Deep Conditional Transformation Models [0.0]
Learning the cumulative distribution function (CDF) of an outcome variable conditional on a set of features remains challenging.
Conditional transformation models provide a semi-parametric approach that allows to model a large class of conditional CDFs.
We propose a novel network architecture, provide details on different model definitions and derive suitable constraints.
arXiv Detail & Related papers (2020-10-15T16:25:45Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
We present a framework for discovering continuum models from high fidelity molecular simulation data.
Our approach applies a neural network parameterization of governing physics in modal space.
We demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows.
arXiv Detail & Related papers (2020-09-25T01:13:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.