Planning-Aware Diffusion Networks for Enhanced Motion Forecasting in Autonomous Driving
- URL: http://arxiv.org/abs/2410.19639v2
- Date: Mon, 04 Nov 2024 07:24:15 GMT
- Title: Planning-Aware Diffusion Networks for Enhanced Motion Forecasting in Autonomous Driving
- Authors: Liu Yunhao, Ding Hong, Zhang Ziming, Wang Huixin, Liu Jinzhao, Xi Suyang,
- Abstract summary: Planning-Integrated Forecasting Model (PIFM) is a novel framework inspired by neural mechanisms governing decision-making and multi-agent coordination in the brain.
PIFM is able to forecast future trajectories of all agents within a scenario.
This architecture enhances model transparency, as it parallels the brain's method of dynamically adjusting predictions based on external stimuli and other agents'behaviors.
- Score: 0.0
- License:
- Abstract: Autonomous driving technology has seen significant advancements, but existing models often fail to fully capture the complexity of multi-agent environments, where interactions between dynamic agents are critical. To address this, we propose the Planning-Integrated Forecasting Model (PIFM), a novel framework inspired by neural mechanisms governing decision-making and multi-agent coordination in the brain. PIFM leverages rich contextual information, integrating road structures, traffic rules, and the behavior of surrounding vehicles to improve both the accuracy and interpretability of predictions. By adopting a diffusion-based architecture, akin to neural diffusion processes involved in predicting and planning, PIFM is able to forecast future trajectories of all agents within a scenario. This architecture enhances model transparency, as it parallels the brain's method of dynamically adjusting predictions based on external stimuli and other agents'behaviors. Extensive experiments validate PIFM's capacity to provide interpretable, neuroscience-driven solutions for safer and more efficient autonomous driving systems, with an extremely low number of parameters.
Related papers
- Hypergraph-based Motion Generation with Multi-modal Interaction Relational Reasoning [13.294396870431399]
Real-world driving environments are characterized by dynamic and diverse interactions among vehicles.
This research introduces an integrated framework for autonomous vehicles (AVs) motion prediction.
arXiv Detail & Related papers (2024-09-18T03:30:38Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Autonomous Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes dataset demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Enhanced Prediction of Multi-Agent Trajectories via Control Inference and State-Space Dynamics [14.694200929205975]
This paper introduces a novel methodology for trajectory forecasting based on state-space dynamic system modeling.
To enhance the precision of state estimations within the dynamic system, the paper also presents a novel modeling technique for control variables.
The proposed approach ingeniously integrates graph neural networks with state-space models, effectively capturing the complexities of multi-agent interactions.
arXiv Detail & Related papers (2024-08-08T08:33:02Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - MTR++: Multi-Agent Motion Prediction with Symmetric Scene Modeling and
Guided Intention Querying [110.83590008788745]
Motion prediction is crucial for autonomous driving systems to understand complex driving scenarios and make informed decisions.
In this paper, we propose Motion TRansformer (MTR) frameworks to address these challenges.
The initial MTR framework utilizes a transformer encoder-decoder structure with learnable intention queries.
We introduce an advanced MTR++ framework, extending the capability of MTR to simultaneously predict multimodal motion for multiple agents.
arXiv Detail & Related papers (2023-06-30T16:23:04Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.