論文の概要: VARS: Vision-based Assessment of Risk in Security Systems
- arxiv url: http://arxiv.org/abs/2410.19642v1
- Date: Fri, 25 Oct 2024 15:47:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:37:42.143724
- Title: VARS: Vision-based Assessment of Risk in Security Systems
- Title(参考訳): VARS:セキュリティシステムにおけるリスクの視覚的評価
- Authors: Pranav Gupta, Pratham Gohil, Sridhar S,
- Abstract要約: 本研究では、さまざまな機械学習モデルとディープラーニングモデルの比較分析を行い、100ビデオのカスタムデータセットで危険度を予測する。
危険度は3つのカテゴリに分類される: 警告なし (7未満) と高い警告なし (7以上) である。
- 参考スコア(独自算出の注目度): 1.433758865948252
- License:
- Abstract: The accurate prediction of danger levels in video content is critical for enhancing safety and security systems, particularly in environments where quick and reliable assessments are essential. In this study, we perform a comparative analysis of various machine learning and deep learning models to predict danger ratings in a custom dataset of 100 videos, each containing 50 frames, annotated with human-rated danger scores ranging from 0 to 10. The danger ratings are further classified into three categories: no alert (less than 7)and high alert (greater than equal to 7). Our evaluation covers classical machine learning models, such as Support Vector Machines, as well as Neural Networks, and transformer-based models. Model performance is assessed using standard metrics such as accuracy, F1-score, and mean absolute error (MAE), and the results are compared to identify the most robust approach. This research contributes to developing a more accurate and generalizable danger assessment framework for video-based risk detection.
- Abstract(参考訳): ビデオコンテンツの危険レベルの正確な予測は、特に迅速で信頼性の高いアセスメントが不可欠である環境において、安全性とセキュリティシステムの強化に不可欠である。
本研究では,さまざまな機械学習モデルと深層学習モデルの比較分析を行い,0から10までの危険度スコアを付加した50のフレームを含む100のビデオのカスタムデータセットで危険度を予測する。
危険度は、警告なし(7歳未満)と高い警告なし(7歳未満)の3つのカテゴリに分類される。
我々の評価では、サポートベクトルマシンやニューラルネットワーク、トランスフォーマーベースモデルなど、古典的な機械学習モデルを対象としている。
モデル性能は、精度、F1スコア、平均絶対誤差(MAE)などの標準的な指標を用いて評価され、その結果を最も堅牢なアプローチを特定するために比較する。
本研究は,ビデオに基づくリスク検出のための,より正確で汎用的な危険評価フレームワークの開発に寄与する。
関連論文リスト
- A Hybrid Defense Strategy for Boosting Adversarial Robustness in Vision-Language Models [9.304845676825584]
本稿では,複数の攻撃戦略と高度な機械学習技術を統合した,新たな敵訓練フレームワークを提案する。
CIFAR-10 や CIFAR-100 などの実世界のデータセットで行った実験により,提案手法がモデルロバスト性を大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-10-18T23:47:46Z) - Unlearn and Burn: Adversarial Machine Unlearning Requests Destroy Model Accuracy [65.80757820884476]
未学習システムのデプロイにおいて、重要で未調査の脆弱性を公開しています。
本稿では,訓練セットに存在しないデータに対して,逆学習要求を送信することにより,攻撃者がモデル精度を劣化させることができる脅威モデルを提案する。
我々は、未学習要求の正当性を検出するための様々な検証メカニズムを評価し、検証の課題を明らかにする。
論文 参考訳(メタデータ) (2024-10-12T16:47:04Z) - Evaluating Predictive Models in Cybersecurity: A Comparative Analysis of Machine and Deep Learning Techniques for Threat Detection [0.0]
本稿では、さまざまな機械学習モデルとディープラーニングモデルを比較して、サイバーセキュリティリスクの検出と対策に最適なモデルを選択する。
この2つのデータセットは、Naive Bayes、SVM、Random Forest、ディープラーニングアーキテクチャ(VGG16)などのモデルを評価するために、精度、精度、リコール、F1スコアのコンテキストで使用される。
論文 参考訳(メタデータ) (2024-07-08T15:05:59Z) - Introducing v0.5 of the AI Safety Benchmark from MLCommons [101.98401637778638]
本稿では,MLCommons AI Safety Working Groupが作成したAI Safety Benchmarkのv0.5を紹介する。
このベンチマークは、チャットチューニング言語モデルを使用するAIシステムの安全性リスクを評価するように設計されている。
論文 参考訳(メタデータ) (2024-04-18T15:01:00Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Analyzing and Mitigating Bias for Vulnerable Classes: Towards Balanced Representation in Dataset [2.143460356353513]
本研究は、脆弱な道路利用者間のクラス不均衡を調査することに焦点を当てる。
一般的なCNNモデルとビジョントランスフォーマー(ViT)をnuScenesデータセットで利用しています。
提案手法を用いて、CNNモデルのIoU(%)とNDS(%)のメトリクスを71.3から75.6、80.6から83.7に改善する。
論文 参考訳(メタデータ) (2024-01-18T22:10:46Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - VSRQ: Quantitative Assessment Method for Safety Risk of Vehicle
Intelligent Connected System [6.499974038759507]
I-FAHP と FCA クラスタリングを組み合わせた新しい車両リスク評価モデル VSRQ モデルを開発した。
我々はOpenPilotのモデルを評価し,VSRQモデルの有効性を実験的に実証した。
論文 参考訳(メタデータ) (2023-05-03T05:08:56Z) - Sample-Efficient Safety Assurances using Conformal Prediction [57.92013073974406]
早期警戒システムは、安全でない状況が差し迫ったときに警告を提供することができる。
安全性を確実に向上させるためには、これらの警告システムは証明可能な偽陰性率を持つべきである。
本稿では,共形予測と呼ばれる統計的推論手法とロボット・環境力学シミュレータを組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-28T23:00:30Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
現在の運用環境に固有ののは、敵対的機械学習の実践である。
本研究では,教師なし学習とグラフに基づく異常検出の可能性を検討する。
我々は,教師付きモデルの訓練時に,現実的な対人訓練機構を組み込んで,対人環境における強力な分類性能を実現する。
論文 参考訳(メタデータ) (2021-05-14T10:05:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。