論文の概要: Evaluating Predictive Models in Cybersecurity: A Comparative Analysis of Machine and Deep Learning Techniques for Threat Detection
- arxiv url: http://arxiv.org/abs/2407.06014v1
- Date: Mon, 8 Jul 2024 15:05:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 15:20:49.195431
- Title: Evaluating Predictive Models in Cybersecurity: A Comparative Analysis of Machine and Deep Learning Techniques for Threat Detection
- Title(参考訳): サイバーセキュリティにおける予測モデルの評価:脅威検出のための機械学習とディープラーニング技術の比較分析
- Authors: Momen Hesham, Mohamed Essam, Mohamed Bahaa, Ahmed Mohamed, Mohamed Gomaa, Mena Hany, Wael Elsersy,
- Abstract要約: 本稿では、さまざまな機械学習モデルとディープラーニングモデルを比較して、サイバーセキュリティリスクの検出と対策に最適なモデルを選択する。
この2つのデータセットは、Naive Bayes、SVM、Random Forest、ディープラーニングアーキテクチャ(VGG16)などのモデルを評価するために、精度、精度、リコール、F1スコアのコンテキストで使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As these attacks become more and more difficult to see, the need for the great hi-tech models that detect them is undeniable. This paper examines and compares various machine learning as well as deep learning models to choose the most suitable ones for detecting and fighting against cybersecurity risks. The two datasets are used in the study to assess models like Naive Bayes, SVM, Random Forest, and deep learning architectures, i.e., VGG16, in the context of accuracy, precision, recall, and F1-score. Analysis shows that Random Forest and Extra Trees do better in terms of accuracy though in different aspects of the dataset characteristics and types of threat. This research not only emphasizes the strengths and weaknesses of each predictive model but also addresses the difficulties associated with deploying such technologies in the real-world environment, such as data dependency and computational demands. The research findings are targeted at cybersecurity professionals to help them select appropriate predictive models and configure them to strengthen the security measures against cyber threats completely.
- Abstract(参考訳): これらの攻撃がますます見るのが難しくなるにつれて、それらを検出する優れたハイテクモデルの必要性は否定できない。
本稿では、さまざまな機械学習モデルとディープラーニングモデルを比較して、サイバーセキュリティリスクの検出と対策に最適なモデルを選択する。
この2つのデータセットは、Naive Bayes、SVM、Random Forest、ディープラーニングアーキテクチャ(VGG16)などのモデルを評価するために、精度、精度、リコール、F1スコアのコンテキストで使用される。
分析によると、データセットの特徴や脅威の種類によって異なるが、ランダムフォレストとエクストラツリーの精度は向上している。
本研究は,各予測モデルの長所と短所を強調するだけでなく,データ依存や計算要求といった実環境におけるそのような技術の展開に関わる問題にも対処する。
調査対象はサイバーセキュリティの専門家で、適切な予測モデルを選択し、サイバー脅威に対するセキュリティ対策を完全に強化するための設定を支援する。
関連論文リスト
- Unlearn and Burn: Adversarial Machine Unlearning Requests Destroy Model Accuracy [65.80757820884476]
未学習システムのデプロイにおいて、重要で未調査の脆弱性を公開しています。
本稿では,訓練セットに存在しないデータに対して,逆学習要求を送信することにより,攻撃者がモデル精度を劣化させることができる脅威モデルを提案する。
我々は、未学習要求の正当性を検出するための様々な検証メカニズムを評価し、検証の課題を明らかにする。
論文 参考訳(メタデータ) (2024-10-12T16:47:04Z) - Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble Deep Kernel Learning Model [4.791983040541727]
本稿では,Web攻撃を検出するために,不確実性を意識したEnsemble Deep Kernel Learning(UEDKL)モデルを提案する。
提案したUEDKLは、ディープカーネル学習モデルを用いて、通常のHTTPリクエストと異なるタイプのWeb攻撃を区別する。
BDCIとSRBHデータセットの実験により、提案したUEDKLフレームワークは、Web攻撃検出性能と不確実性推定品質の両方に大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2024-10-10T08:47:55Z) - Extending Network Intrusion Detection with Enhanced Particle Swarm Optimization Techniques [0.0]
本研究では,機械学習(ML)と深層学習(DL)技術を組み合わせて,ネットワーク侵入検知システム(NIDS)を改善する方法について検討する。
この研究は、CSE-CIC-IDS 2018とLITNET-2020データセットを使用して、MLメソッド(決定木、ランダムフォレスト、XGBoost)とDLモデル(CNN、RNN、DNN)を主要なパフォーマンス指標と比較する。
Decision Treeモデルでは、EPSO(Enhanced Particle Swarm Optimization)を微調整して、ネットワーク違反を効果的に検出する能力を実証した。
論文 参考訳(メタデータ) (2024-08-14T17:11:36Z) - Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
本研究では,機械学習技術を用いたマルウェア検出の徹底的な検討を行う。
その目的は、脅威をより効果的に識別し緩和することで、サイバーセキュリティの能力を向上させることである。
論文 参考訳(メタデータ) (2024-03-04T17:22:43Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Poisoning Attacks and Defenses on Artificial Intelligence: A Survey [3.706481388415728]
データ中毒攻撃は、トレーニングフェーズ中にモデルに供給されたデータサンプルを改ざんして、推論フェーズ中にモデルの精度を低下させる攻撃の一種である。
この研究は、この種の攻撃に対処する最新の文献で見つかった最も関連性の高い洞察と発見をまとめたものである。
実環境下での幅広いMLモデルに対するデータ中毒の影響を比較検討し,本研究の徹底的な評価を行った。
論文 参考訳(メタデータ) (2022-02-21T14:43:38Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - CyberLearning: Effectiveness Analysis of Machine Learning Security
Modeling to Detect Cyber-Anomalies and Multi-Attacks [5.672898304129217]
サイバーラーニング(CyberLearning)は、相関機能選択による機械学習ベースのサイバーセキュリティモデリングである。
本稿では,異常検出のためのバイナリ分類モデルと,各種サイバー攻撃に対するマルチクラス分類モデルについて考察する。
次に、複数の隠蔽層を考慮した人工知能ニューラルネットワークベースのセキュリティモデルを提案する。
論文 参考訳(メタデータ) (2021-03-28T18:47:16Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。