Conformal Prediction for Multimodal Regression
- URL: http://arxiv.org/abs/2410.19653v2
- Date: Mon, 28 Oct 2024 14:48:50 GMT
- Title: Conformal Prediction for Multimodal Regression
- Authors: Alexis Bose, Jonathan Ethier, Paul Guinand,
- Abstract summary: conformal prediction is now extended to multimodal contexts through our methodology.
Our findings highlight the potential for internal neural network features, extracted from convergence points where multimodal information is combined.
This capability paves new paths for deploying conformal prediction in domains abundant with multimodal data.
- Score: 0.0
- License:
- Abstract: This paper introduces multimodal conformal regression. Traditionally confined to scenarios with solely numerical input features, conformal prediction is now extended to multimodal contexts through our methodology, which harnesses internal features from complex neural network architectures processing images and unstructured text. Our findings highlight the potential for internal neural network features, extracted from convergence points where multimodal information is combined, to be used by conformal prediction to construct prediction intervals (PIs). This capability paves new paths for deploying conformal prediction in domains abundant with multimodal data, enabling a broader range of problems to benefit from guaranteed distribution-free uncertainty quantification.
Related papers
- Generative Distribution Prediction: A Unified Approach to Multimodal Learning [4.3108820946281945]
We introduce Generative Distribution Prediction (GDP) to enhance predictive performance across structured and unstructured modalities.
GDP is model-agnostic, compatible with any high-fidelity generative model, and supports transfer learning for domain adaptation.
We empirically validate GDP on four supervised learning tasks-tabular data prediction, question answering, image captioning, and adaptive quantile regression-demonstrating its versatility and effectiveness across diverse domains.
arXiv Detail & Related papers (2025-02-10T22:30:35Z) - Optimal Transport-based Conformal Prediction [8.302146576157497]
Conformal Prediction (CP) is a principled framework for uncertainty in blackbox learning models.
We introduce a novel CP procedure handling prediction score functions through a lens.
We then adapt our method for quantifying multi-output regression and multiclass classification.
arXiv Detail & Related papers (2025-01-31T09:48:28Z) - Multivariate Bayesian Last Layer for Regression: Uncertainty Quantification and Disentanglement [4.137574627759939]
We present new Bayesian Last Layer models in the setting of multivariate regression under heteroscedastic noise.
We propose an optimization algorithm for parameter learning.
We show that the framework can be used to transfer a canonically trained deep neural network to new data domains with uncertainty-aware capability.
arXiv Detail & Related papers (2024-05-02T21:53:32Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
We propose a neural network-based system to predict human trajectory in crowds.
We learn interpretable rule-based intents, and then utilise the expressibility of neural networks to model scene-specific residual.
Our architecture is tested on the interaction-centric benchmark TrajNet++.
arXiv Detail & Related papers (2021-05-07T09:22:34Z) - Multivariate Deep Evidential Regression [77.34726150561087]
A new approach with uncertainty-aware neural networks shows promise over traditional deterministic methods.
We discuss three issues with a proposed solution to extract aleatoric and epistemic uncertainties from regression-based neural networks.
arXiv Detail & Related papers (2021-04-13T12:20:18Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Neural Mixture Distributional Regression [0.9023847175654603]
We present a holistic framework to estimate finite mixtures of distributional regressions defined by flexible additive predictors.
Our framework is able to handle a large number of mixtures of potentially different distributions in high-dimensional settings.
arXiv Detail & Related papers (2020-10-14T09:00:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.