論文の概要: On the Benefits of Active Data Collection in Operator Learning
- arxiv url: http://arxiv.org/abs/2410.19725v2
- Date: Thu, 05 Dec 2024 14:34:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:38:21.475072
- Title: On the Benefits of Active Data Collection in Operator Learning
- Title(参考訳): オペレータ学習におけるアクティブデータ収集の有用性について
- Authors: Unique Subedi, Ambuj Tewari,
- Abstract要約: アクティブなデータ収集戦略により、共分散カーネルの固有値の減衰率の観点から誤差収束率を確立する。
これは、$sim n-1$よりも収束率が速くないパッシブ(d.d.)データ収集戦略とは対照的である。
- 参考スコア(独自算出の注目度): 17.98959620987217
- License:
- Abstract: We investigate active data collection strategies for operator learning when the target operator is linear and the input functions are drawn from a mean-zero stochastic process with continuous covariance kernels. With an active data collection strategy, we establish an error convergence rate in terms of the decay rate of the eigenvalues of the covariance kernel. Thus, with sufficiently rapid eigenvalue decay of the covariance kernels, arbitrarily fast error convergence rates can be achieved. This contrasts with the passive (i.i.d.) data collection strategies, where the convergence rate is never faster than $\sim n^{-1}$. In fact, for our setting, we establish a \emph{non-vanishing} lower bound for any passive data collection strategy, regardless of the eigenvalues decay rate of the covariance kernel. Overall, our results show the benefit of active over passive data collection strategies in operator learning.
- Abstract(参考訳): 本研究では,連続した共分散カーネルを持つ平均ゼロ確率過程から,対象演算子が線形で入力関数が引き出されるときの演算子学習のためのアクティブデータ収集戦略について検討する。
アクティブなデータ収集戦略により、共分散カーネルの固有値の減衰率の観点から誤差収束率を確立する。
したがって、共分散核の十分に高速な固有値崩壊により、任意に高速な誤差収束率が得られる。
これは、コンバージェンスレートが$\sim n^{-1}$より速くないパッシブ(d.d.)データ収集戦略とは対照的である。
実際、我々の設定では、共分散カーネルの固有値減衰率によらず、任意の受動的データ収集戦略に対して \emph{non-vanishing} の下界を確立する。
この結果から,演算子学習における受動的データ収集戦略のメリットが示唆された。
関連論文リスト
- Transfer Learning of CATE with Kernel Ridge Regression [4.588222946914528]
カーネルリッジ回帰(KRR)を用いた条件平均処理効果(CATE)の重畳適応変換学習法を提案する。
我々は, 弱い重なり合いとCATE関数の複雑さの両方に対する適応性を強調した, 急激な非漸近的MSE境界による手法の理論的正当性を提供する。
論文 参考訳(メタデータ) (2025-02-17T01:07:45Z) - Simulation-Free Training of Neural ODEs on Paired Data [20.36333430055869]
我々は,NODEのシミュレーションフリートレーニングにフローマッチングフレームワークを用いる。
ペアデータ間で直接フローマッチングを適用することは、しばしば不定義のフローにつながることを示す。
データペアの埋め込み空間にフローマッチングを適用するための簡単な拡張を提案する。
論文 参考訳(メタデータ) (2024-10-30T11:18:27Z) - The High Line: Exact Risk and Learning Rate Curves of Stochastic Adaptive Learning Rate Algorithms [8.681909776958184]
本研究では,高次元最適化問題の大規模なクラスにおいて,学習速度と学習速度のダイナミクスを解析するためのフレームワークを開発する。
我々は、ODEのシステムに対する決定論的解という観点から、リスクと学習率曲線の正確な表現を与える。
最小二乗問題に対する最適正則線探索とAdaGrad-Normの2つの適応学習率について詳細に検討する。
論文 参考訳(メタデータ) (2024-05-30T00:27:52Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - KSD Aggregated Goodness-of-fit Test [38.45086141837479]
我々は、異なるカーネルで複数のテストを集約するKSDAggと呼ばれるテストを構築する戦略を導入する。
我々は、KSDAggのパワーに関する漸近的でない保証を提供する。
KSDAggは、他の最先端のKSDベースの適合性試験方法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-02-02T00:33:09Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - RATT: Leveraging Unlabeled Data to Guarantee Generalization [96.08979093738024]
ラベルのないデータを利用して一般化境界を生成する手法を紹介します。
境界が0-1経験的リスク最小化に有効であることを証明します。
この作業は、見えないラベル付きデータが利用できない場合でも、ディープネットの一般化を証明するためのオプションを実践者に提供します。
論文 参考訳(メタデータ) (2021-05-01T17:05:29Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
コントラスト学習(Contrastive Learning)は、ラベルのないデータから構築された分類タスクを解決するためにモデルを訓練する自己指導型の手法のファミリーである。
拡散の場合,小~中距離間隔の遷移カーネルを適切に構築したコントラスト学習タスクを用いて推定できることが示される。
論文 参考訳(メタデータ) (2021-03-03T23:06:47Z) - Robust Correction of Sampling Bias Using Cumulative Distribution
Functions [19.551668880584973]
変数ドメインとバイアス付きデータセットは、トレーニングとターゲット分布の違いにつながる可能性がある。
これを緩和するための現在のアプローチは、しばしばトレーニングとターゲット確率密度関数の比率を推定することに依存する。
論文 参考訳(メタデータ) (2020-10-23T22:13:00Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
さらに、数値データセットの列に定数値を持つ最大二クラスタの効率的で完全で正しい非冗長列挙を実現できる二クラスタリングアルゴリズムであるRIn-Close_CVCを拡張した。
改良されたアルゴリズムはRIn-Close_CVC3と呼ばれ、RIn-Close_CVCの魅力的な特性を保ちます。
論文 参考訳(メタデータ) (2020-03-07T14:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。