論文の概要: Combining LLM Code Generation with Formal Specifications and Reactive Program Synthesis
- arxiv url: http://arxiv.org/abs/2410.19736v1
- Date: Wed, 18 Sep 2024 15:59:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 10:41:09.261400
- Title: Combining LLM Code Generation with Formal Specifications and Reactive Program Synthesis
- Title(参考訳): LLMコード生成と形式仕様の併用とリアクティブプログラム合成
- Authors: William Murphy, Nikolaus Holzer, Feitong Qiao, Leyi Cui, Raven Rothkopf, Nathan Koenig, Mark Santolucito,
- Abstract要約: 大規模言語モデル(LLM)は精度に苦しむが、リスクの高いアプリケーションには適さない。
コード生成を LLM で処理する部分と,形式的なメソッドベースのプログラム合成で処理する部分の2つに分割する手法を提案する。
- 参考スコア(独自算出の注目度): 0.7580487359358722
- License:
- Abstract: In the past few years, Large Language Models (LLMs) have exploded in usefulness and popularity for code generation tasks. However, LLMs still struggle with accuracy and are unsuitable for high-risk applications without additional oversight and verification. In particular, they perform poorly at generating code for highly complex systems, especially with unusual or out-of-sample logic. For such systems, verifying the code generated by the LLM may take longer than writing it by hand. We introduce a solution that divides the code generation into two parts; one to be handled by an LLM and one to be handled by formal methods-based program synthesis. We develop a benchmark to test our solution and show that our method allows the pipeline to solve problems previously intractable for LLM code generation.
- Abstract(参考訳): ここ数年、LLM(Large Language Models)は、コード生成タスクの有用性と人気が爆発的に高まっている。
しかし、LSMは依然として正確性に苦慮しており、監視や検証を伴わないハイリスクアプリケーションには適していない。
特に、非常に複雑なシステム、特に異常なロジックやサンプル外ロジックのコード生成では、パフォーマンスが悪くなります。
このようなシステムでは、LSMが生成したコードを検証するのに手作業で書くよりも時間がかかる可能性がある。
コード生成を LLM で処理する部分と,形式的なメソッドベースのプログラム合成で処理する部分の2つに分割する手法を提案する。
提案手法は,従来のLLMコード生成の難解な問題に対して,パイプラインが解決可能であることを示す。
関連論文リスト
- Automatic Generation of Benchmarks and Reliable LLM Judgment for Code Tasks [0.8274693573069442]
この研究は、自動生成されたベンチマークを利用して、LaaJの実装を生成および評価する方法論を導入する。
ベンチマークは、LaaJの開発と検証と、LaaJを使用してLLMコード関連ソリューションの検証とテストの両方に使用される。
私たちのアプローチは、高品質なコードタスクソリューションの作成を可能にします。
論文 参考訳(メタデータ) (2024-10-28T14:34:36Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
大型言語モデル(LLM)はゼロショット学習の能力を持ち、訓練や微調整を必要としない。
LLMを用いた関数型コード埋め込みを生成する新しいアプローチであるzsLLMCodeを提案する。
論文 参考訳(メタデータ) (2024-09-23T01:03:15Z) - EPiC: Cost-effective Search-based Prompt Engineering of LLMs for Code Generation [8.009881267479189]
大規模言語モデル(LLM)は、特にコード生成において、様々なソフトウェア開発タスクで利用が増加している。
我々は、コードのための進化的プロンプトエンジニアリング(EPiC)という別のアプローチを提案し、高品質なコードを生成するより良いプロンプトに向けて、元のプロンプトを進化させる。
最先端(SOTA)LLMベースのコード生成モデルに対する評価は,コスト効率の観点から,EPiCがすべてのベースラインを上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-20T21:15:36Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
論文 参考訳(メタデータ) (2024-03-11T02:06:30Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Function-constrained Program Synthesis [12.55507214959886]
大規模言語モデル(LLM)は、開発環境で利用可能なすべてのコードを描画することで、リアルタイムでコードを生成することができる。
現在のシステムには効果的なリカバリ方法が欠如しており、ユーザーは十分な解に到達するまで、修正されたプロンプトでモデルを反復的に再起動せざるを得ない。
提案手法は,コード生成を明示的な関数集合に制約し,自動生成されたサブ関数を通じて失敗した試行からのリカバリを可能にする。
論文 参考訳(メタデータ) (2023-11-27T02:55:34Z) - CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules [51.82044734879657]
我々は,自己修正の連鎖を通じてモジュール化されたコード生成を誘発する,新しい推論フレームワークであるCodeChainを提案する。
CodeChainは、生成したソリューションのモジュール性と正確性の両方を大幅に向上させ、APPSで35%、CodeContestsで76%の相対パス@1の改善を実現しています。
論文 参考訳(メタデータ) (2023-10-13T10:17:48Z) - Test-Case-Driven Programming Understanding in Large Language Models for
Better Code Generation [15.166827643436346]
muFiXは、大きな言語モデル(LLM)のコード生成性能を改善する新しいプロンプト技術である。
まず、テストケース分析を利用して仕様の理解を得、自己改善プロセスを可能にする。
muFiXはさらに、提供された理解と実際の理解の間のギャップを減らす方向に向けた仕様理解を修正している。
論文 参考訳(メタデータ) (2023-09-28T02:58:07Z) - Inference with Reference: Lossless Acceleration of Large Language Models [97.04200102556551]
LLMAは、参照によるLarge Language Model (LLM)推論を高速化するアクセラレータである。
LLMによる復号結果と実世界の多くのシナリオで利用できる参照との間には、多くの同一のテキストが存在していることが観察の動機となっている。
論文 参考訳(メタデータ) (2023-04-10T09:55:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。