論文の概要: SALINA: Towards Sustainable Live Sonar Analytics in Wild Ecosystems
- arxiv url: http://arxiv.org/abs/2410.19742v1
- Date: Thu, 10 Oct 2024 00:32:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:52:21.748666
- Title: SALINA: Towards Sustainable Live Sonar Analytics in Wild Ecosystems
- Title(参考訳): SALINA: 野生生態系における持続可能なライブソナー分析を目指して
- Authors: Chi Xu, Rongsheng Qian, Hao Fang, Xiaoqiang Ma, William I. Atlas, Jiangchuan Liu, Mark A. Spoljaric,
- Abstract要約: 本稿では,サステナブルライブソナー分析システムであるSALINAを紹介する。
SALINAは空間的および時間的適応による音響ソナーデータのリアルタイム処理を可能にする。
SALINAは6ヶ月間、カナダのブリティッシュコロンビア州の2つの内陸河川に配備された。
- 参考スコア(独自算出の注目度): 12.711126566709076
- License:
- Abstract: Sonar radar captures visual representations of underwater objects and structures using sound wave reflections, making it essential for exploration, mapping, and continuous surveillance in wild ecosystems. Real-time analysis of sonar data is crucial for time-sensitive applications, including environmental anomaly detection and in-season fishery management, where rapid decision-making is needed. However, the lack of both relevant datasets and pre-trained DNN models, coupled with resource limitations in wild environments, hinders the effective deployment and continuous operation of live sonar analytics. We present SALINA, a sustainable live sonar analytics system designed to address these challenges. SALINA enables real-time processing of acoustic sonar data with spatial and temporal adaptations, and features energy-efficient operation through a robust energy management module. Deployed for six months at two inland rivers in British Columbia, Canada, SALINA provided continuous 24/7 underwater monitoring, supporting fishery stewardship and wildlife restoration efforts. Through extensive real-world testing, SALINA demonstrated an up to 9.5% improvement in average precision and a 10.1% increase in tracking metrics. The energy management module successfully handled extreme weather, preventing outages and reducing contingency costs. These results offer valuable insights for long-term deployment of acoustic data systems in the wild.
- Abstract(参考訳): ソナーレーダーは音波反射を使って水中の物体や構造物の視覚的表現を捉え、野生生態系の探索、マッピング、継続的な監視に不可欠である。
ソナーデータのリアルタイム解析は, 環境異常検出や季節内漁業管理など, 迅速な意思決定が必要な時間依存的応用に不可欠である。
しかし、関連するデータセットと事前訓練されたDNNモデルの欠如は、野生環境におけるリソース制限と相まって、ライブソナー分析の効果的な展開と継続的な運用を妨げる。
本稿では,これらの課題に対処するためのサステナブルライブソナー分析システムであるSALINAを紹介する。
SALINAは、空間的および時間的適応を伴う音響ソナーデータのリアルタイム処理を可能にし、ロバストエネルギー管理モジュールによるエネルギー効率の高い操作を特徴とする。
カナダ、ブリティッシュコロンビア州の2つの内陸河川に6ヶ月間配備され、24/7の水中監視を行い、漁業のスチュワードシップと野生生物の修復を支援した。
大規模な実世界のテストを通じて、SALINAは平均精度を最大9.5%改善し、トラッキングメトリクスを10.1%増加させた。
エネルギー管理モジュールは極端な天候に対処し、停電を防ぎ、緊急時のコストを低減した。
これらの結果は,自然界における音響データシステムの長期展開に有用な洞察を与えてくれる。
関連論文リスト
- SEN12-WATER: A New Dataset for Hydrological Applications and its Benchmarking [40.996860106131244]
気候と干ばつの増加は、世界中の水資源管理に重大な課題をもたらしている。
本稿では,干ばつ関連分析のためのエンドツーエンドディープラーニングフレームワークを用いたベンチマークとともに,新しいデータセットであるSEN12-WATERを提案する。
論文 参考訳(メタデータ) (2024-09-25T16:50:59Z) - ODYSSEE: Oyster Detection Yielded by Sensor Systems on Edge Electronics [14.935296890629795]
オイスターは沿岸生態系において重要なキーストーンであり、経済的、環境的、文化的な利益をもたらす。
現在の監視戦略は、しばしば破壊的な方法に依存している。
本研究では, 安定拡散を用いた新しいパイプラインを提案し, 現実的な合成データを用いて収集した実データセットを増強する。
論文 参考訳(メタデータ) (2024-09-11T04:31:09Z) - DeepExtremeCubes: Integrating Earth system spatio-temporal data for impact assessment of climate extremes [5.736700805381591]
機械学習技術は、将来性を示すが、十分に構造化され、高品質で、キュレートされた分析可能なデータセットを必要とする。
ここでは、熱波の周囲をマッピングし、干ばつによる極端な衝撃に対処するDeepExtremesデータベースを紹介します。
全世界で4万個以上の空間サンプリングされた小さなデータキューブ(すなわちミニキューブ)を含み、空間カバレッジは2.5×2.5kmである。
論文 参考訳(メタデータ) (2024-06-26T08:53:26Z) - Large Scale Masked Autoencoding for Reducing Label Requirements on SAR Data [5.235143203977019]
本研究では,地球表面面積の8.7%をカバーするSAR振幅データに対して,自己教師付き事前学習方式,マスク付き自動符号化を適用した。
この事前学習方式を用いることで、下流タスクのラベル付け要求を1桁以上削減できることを示す。
本研究は,タスクモデルと地域固有のSARモデルの開発を促進することにより,気候変動の緩和を著しく促進する。
論文 参考訳(メタデータ) (2023-10-02T00:11:47Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
時間遅延ニューラルネットワークとヒストグラム層を組み合わせた新しい手法により,特徴学習の改善と水中音響目標分類を実現する。
提案手法はベースラインモデルより優れており,受動的ソナー目標認識のための統計的文脈を取り入れた有効性を示す。
論文 参考訳(メタデータ) (2023-07-25T19:47:26Z) - Neural Laplace Control for Continuous-time Delayed Systems [76.81202657759222]
本稿では,ニューラルラプラス力学モデルとモデル予測制御(MPC)プランナを組み合わせた連続時間モデルに基づくオフラインRL法を提案する。
専門家の政策性能に近い連続的な遅延環境を実験的に示す。
論文 参考訳(メタデータ) (2023-02-24T12:40:28Z) - Automated Detection of Dolphin Whistles with Convolutional Networks and
Transfer Learning [7.52108936537426]
畳み込みニューラルネットワークは、従来の自動手法よりもはるかに優れていることを示す。
提案システムでは、周囲雑音の存在下でも信号を検出することができるが、同時に、偽陽性や偽陰性を生成する可能性も一貫して低減できる。
論文 参考訳(メタデータ) (2022-11-28T15:06:46Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
水中音響から風速時系列を検索するための深層学習手法を提案する。
我々のアプローチは、事前の物理知識と計算効率の両面から恩恵を受けるために、データ同化と学習ベースのフレームワークをブリッジする。
論文 参考訳(メタデータ) (2022-08-18T15:27:40Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
自律レースでは、天気は突然変化し、認識が著しく低下し、非効率な操作が引き起こされる。
悪天候の検知を改善するために、ディープラーニングベースのモデルは通常、そのような状況下でキャプチャされた広範なデータセットを必要とする。
本稿では,5つの最先端検出器のうち4つの性能向上を図るために,自動レース(CycleGANを用いた)における合成悪条件データセットを用いた手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T10:02:40Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z) - Predictive Analytics for Water Asset Management: Machine Learning and
Survival Analysis [55.41644538483948]
本研究では,水管故障の予測のための統計的および機械学習の枠組みについて検討する。
スペイン,バルセロナの配水ネットワーク内の全管の故障記録を含むデータセットを用いて検討を行った。
その結果, 管形状, 年齢, 材質, 土壌被覆など, 重要な危険因子の影響が明らかにされた。
論文 参考訳(メタデータ) (2020-07-02T19:08:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。