論文の概要: Reliable, Routable, and Reproducible: Collection of Pedestrian Pathways at Statewide Scale
- arxiv url: http://arxiv.org/abs/2410.19762v1
- Date: Sat, 12 Oct 2024 02:31:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:19:47.478464
- Title: Reliable, Routable, and Reproducible: Collection of Pedestrian Pathways at Statewide Scale
- Title(参考訳): 信頼性・順応性・再現性:国家規模における歩行者道の収集
- Authors: Yuxiang Zhang, Bill Howe, Anat Caspi,
- Abstract要約: 本稿では,国家規模で歩行者経路データを収集,管理,提供,維持する手法を提案する。
約2年以内にワシントン州全体に向けて、荒削りな歩行者道を作ることを目標としている。
- 参考スコア(独自算出の注目度): 7.346075203371274
- License:
- Abstract: While advances in mobility technology including autonomous vehicles and multi-modal navigation systems can improve mobility equity for people with disabilities, these technologies depend crucially on accurate, standardized, and complete pedestrian path networks. Ad hoc collection efforts lead to a data record that is sparse, unreliable, and non-interoperable. This paper presents a sociotechnical methodology to collect, manage, serve, and maintain pedestrian path data at a statewide scale. Combining the automation afforded by computer-vision approaches applied to aerial imagery and existing road network data with the quality control afforded by interactive tools, we aim to produce routable pedestrian pathways for the entire State of Washington within approximately two years. We extract paths, crossings, and curb ramps at scale from aerial imagery, integrating multi-input segmentation methods with road topology data to ensure connected, routable networks. We then organize the predictions into project regions selected for their value to the public interest, where each project region is divided into intersection-scale tasks. These tasks are assigned and tracked through an interactive tool that manages concurrency, progress, feedback, and data management. We demonstrate that our automated systems outperform state-of-the-art methods in producing routable pathway networks, which then significantly reduces the time required for human vetting. Our results demonstrate the feasibility of yielding accurate, robust pedestrian pathway networks at the scale of an entire state. This paper intends to inform procedures for national-scale ADA compliance by providing pedestrian equity, safety, and accessibility, and improving urban environments for all users.
- Abstract(参考訳): 自律走行車やマルチモーダルナビゲーションシステムを含む移動技術は、障害者の移動能力を向上させることができるが、これらの技術は、正確で、標準化され、完全な歩行者道網に依存している。
アドホックコレクションの取り組みは、スパースで信頼性がなく、相互運用不能なデータレコードにつながる。
本稿では,国家規模で歩行者経路データを収集,管理,提供,維持するための社会技術方法論を提案する。
航空画像と既存の道路ネットワークデータに適用したコンピュータビジョンによる自動化とインタラクティブツールによる品質管理を組み合わせることで、ワシントン州全体で約2年以内に、荒削りな歩行者経路を作り出すことを目指している。
道路トポロジデータとマルチインプットセグメンテーション手法を統合し,接続可能なネットワークを確保する。
次に、各プロジェクト領域を交差点スケールのタスクに分割し、その価値を公共の関心に向けて選択したプロジェクト領域に予測を整理する。
これらのタスクは、並行処理、進捗、フィードバック、データ管理を管理するインタラクティブツールを通じて割り当てられ、追跡される。
我々は, 自動システムにおいて, 未処理経路網の製作における最先端の手法よりも優れており, 人間のベッティングに要する時間を大幅に短縮することを示した。
以上の結果から, 正確な歩行者経路網を全州規模で実現可能であることを示す。
本稿では,歩行者の安全,安全,アクセシビリティ,都市環境の改善などにより,全国規模のADAコンプライアンスの手順を通知することを目的とする。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - PathwayBench: Assessing Routability of Pedestrian Pathway Networks Inferred from Multi-City Imagery [15.563635571840733]
都市部における歩行者の移動を支援するには、構築された環境の完全かつ頑健なグラフ表現が必要である。
道路ネットワークの経路とは対照的に、歩行者ネットワークの経路は狭く、より頻繁に切断され、視覚的にも物質的にも小さな領域で変化している。
歩行者経路網グラフを抽出する既存のアルゴリズムは矛盾なく評価され、ルータビリティを無視する傾向がある。
論文 参考訳(メタデータ) (2024-07-23T22:47:32Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
道路表面の再構築は、車両の走行計画と制御システムの解析と予測を促進するのに役立つ。
我々は,様々な運転条件下で,特定のプラットフォームで収集した実世界,高解像度,高精度のデータセットであるRoad Surface Reconstructionデータセットを紹介した。
約16,000対のステレオ画像、原点雲、地中深度・不均等地図を含む一般的な道路形態を網羅している。
論文 参考訳(メタデータ) (2023-10-03T17:59:32Z) - Automatic Extraction of Relevant Road Infrastructure using Connected
vehicle data and Deep Learning Model [4.235459779667272]
本稿では,コネクテッドカーデータと最先端のディープラーニング技術を活用した新しいアプローチを提案する。
道路区間にジオハッシングを施し,道路区間の画像表現を生成することにより,道路区間と交差点の正確な分類にYOLOv5アルゴリズムを用いる。
実験の結果,97%のF1スコア,90%のF1スコアに到達した。
論文 参考訳(メタデータ) (2023-08-10T15:57:47Z) - APE: An Open and Shared Annotated Dataset for Learning Urban Pedestrian
Path Networks [16.675093530600154]
歩道やサイクウェイを含む完全な交通網を推定することは、多くの自動化システムにとって不可欠である。
この研究は、都市における歩道、横断歩道、角球の衛星画像、地図画像、アノテーションの新たなデータセットを導入することで、この問題に大規模に対処し始めている。
本稿では,道路ネットワーク情報と提案したデータセットを用いて,接続された歩行者経路網マップを推定するエンド・ツー・エンドのプロセスを提案する。
論文 参考訳(メタデータ) (2023-03-04T05:08:36Z) - OASIS: Automated Assessment of Urban Pedestrian Paths at Scale [16.675093530600154]
モバイル機器を用いて歩道ネットワークデータを抽出する自由かつオープンソースの自動マッピングシステムを開発した。
本稿では,地域交通経路レビューチームの一員である人間測量士とともに,実環境で収集した画像を用いて訓練・テストしたプロトタイプシステムについて述べる。
論文 参考訳(メタデータ) (2023-03-04T01:32:59Z) - Automatic Intersection Management in Mixed Traffic Using Reinforcement
Learning and Graph Neural Networks [0.5801044612920815]
接続された自動運転は、都市交通効率を大幅に改善する可能性がある。
協調行動計画(cooperative behavior planning)は、複数の車両の動作を協調的に最適化するために用いられる。
本研究は,協調型マルチエージェント計画における強化学習とグラフに基づくシーン表現を活用することを提案する。
論文 参考訳(メタデータ) (2023-01-30T08:21:18Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCCは、活動やユーティリティの自動化と最適化による効率向上を目指すデータ中心の社会を構想しています。
本稿では、SCCにおけるAIの視点を説明し、道路車両の自動化とスマート交通制御を可能にする交通で使用されるAIベースの技術の概要を示す。
論文 参考訳(メタデータ) (2021-04-07T14:31:08Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
複雑な都市環境での自律走行学習のためのニューラルモーションプランナー(NMP)を提案する。
我々は,生lidarデータとhdマップを入力とし,解釈可能な中間表現を生成する全体モデルを設計した。
北米のいくつかの都市で収集された実世界の運転データにおける我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2021-01-17T14:16:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。