論文の概要: Automatic Intersection Management in Mixed Traffic Using Reinforcement
Learning and Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2301.12717v2
- Date: Fri, 28 Jul 2023 09:27:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-31 16:21:20.465580
- Title: Automatic Intersection Management in Mixed Traffic Using Reinforcement
Learning and Graph Neural Networks
- Title(参考訳): 強化学習とグラフニューラルネットワークを用いた混在交通の自動断面積管理
- Authors: Marvin Klimke, Benjamin V\"olz, Michael Buchholz
- Abstract要約: 接続された自動運転は、都市交通効率を大幅に改善する可能性がある。
協調行動計画(cooperative behavior planning)は、複数の車両の動作を協調的に最適化するために用いられる。
本研究は,協調型マルチエージェント計画における強化学習とグラフに基づくシーン表現を活用することを提案する。
- 参考スコア(独自算出の注目度): 0.5801044612920815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Connected automated driving has the potential to significantly improve urban
traffic efficiency, e.g., by alleviating issues due to occlusion. Cooperative
behavior planning can be employed to jointly optimize the motion of multiple
vehicles. Most existing approaches to automatic intersection management,
however, only consider fully automated traffic. In practice, mixed traffic,
i.e., the simultaneous road usage by automated and human-driven vehicles, will
be prevalent. The present work proposes to leverage reinforcement learning and
a graph-based scene representation for cooperative multi-agent planning. We
build upon our previous works that showed the applicability of such machine
learning methods to fully automated traffic. The scene representation is
extended for mixed traffic and considers uncertainty in the human drivers'
intentions. In the simulation-based evaluation, we model measurement
uncertainties through noise processes that are tuned using real-world data. The
paper evaluates the proposed method against an enhanced first in - first out
scheme, our baseline for mixed traffic management. With increasing share of
automated vehicles, the learned planner significantly increases the vehicle
throughput and reduces the delay due to interaction. Non-automated vehicles
benefit virtually alike.
- Abstract(参考訳): コネクテッド自動運転は、閉塞による問題を緩和するなど、都市交通効率を大幅に改善する可能性がある。
複数の車両の動作を協調的に最適化するために協調行動計画を用いることができる。
しかし、既存の自動交差点管理へのアプローチのほとんどは、完全に自動化されたトラフィックのみを考慮している。
実際には、混在する交通、すなわち、自動走行車と人力走行車による同時道路利用が普及する。
本稿では,強化学習とグラフに基づくシーン表現を協調型マルチエージェント計画に活用することを提案する。
我々は、このような機械学習手法が完全に自動化されたトラフィックに適用可能であることを示す以前の研究に基づいて構築した。
シーン表現は混在トラフィックのために拡張され、人間のドライバーの意図の不確実性を考慮する。
シミュレーションに基づく評価では,実世界データを用いて調整された雑音プロセスを通して測定の不確かさをモデル化する。
提案手法について,提案手法を改良した第1報,第1報,混合トラフィック管理のベースラインとして評価した。
自動走行車のシェアの増加に伴い、学習プランナーは車両のスループットを大幅に向上させ、相互作用による遅延を低減する。
非自動走行車も同様である。
関連論文リスト
- Automatic Extraction of Relevant Road Infrastructure using Connected
vehicle data and Deep Learning Model [4.235459779667272]
本稿では,コネクテッドカーデータと最先端のディープラーニング技術を活用した新しいアプローチを提案する。
道路区間にジオハッシングを施し,道路区間の画像表現を生成することにより,道路区間と交差点の正確な分類にYOLOv5アルゴリズムを用いる。
実験の結果,97%のF1スコア,90%のF1スコアに到達した。
論文 参考訳(メタデータ) (2023-08-10T15:57:47Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - An Enhanced Graph Representation for Machine Learning Based Automatic
Intersection Management [0.5161531917413708]
我々は、前述したグラフベースのシーン表現とグラフニューラルネットワークに基づいて、強化学習を用いてこの問題にアプローチする。
本稿では,自動交差点管理において一般的に使用されるベースラインに対して,提案手法の詳細な評価を行う。
論文 参考訳(メタデータ) (2022-07-18T14:53:50Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Cooperative Behavioral Planning for Automated Driving using Graph Neural
Networks [0.5801044612920815]
本研究は,複数の車両を共同で計画することで,都市交差点における交通流の最適化に機械学習アルゴリズムを活用することを提案する。
学習に基づく行動計画にはいくつかの課題が伴い、適切な入力と出力の表現と大量の基幹データを要求する。
自動運転における意思決定のためのオープンソースのシミュレーション環境において,提案手法を訓練し,評価する。
論文 参考訳(メタデータ) (2022-02-23T09:36:15Z) - Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning [30.00761722505295]
深層強化学習を用いた混在交通状況における交差点における交通流の最適化手法を提案する。
我々の強化学習エージェントは、信号のない交差点で接続された自動運転車が道路の権利を放棄し、交通の流れを最適化するために他の車両に利する、集中型制御器のポリシーを学習する。
論文 参考訳(メタデータ) (2021-06-11T13:16:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
疎結合グラフの学習値に基づいてマルチエージェントルーティングを行うことができるグラフニューラルネットワークに基づくモデルを提案する。
最大25ノードのグラフ上で2つのエージェントでトレーニングしたモデルでは,より多くのエージェントやノードを持つ状況に容易に一般化できることが示されている。
論文 参考訳(メタデータ) (2020-07-09T22:16:45Z) - Efficient Connected and Automated Driving System with Multi-agent Graph
Reinforcement Learning [22.369111982782634]
最近、コネクテッド・アンド・オートマチック・ビークル(CAV)が注目を集めている。
我々は,各自動走行車両が相互に協力関係を学べるようにすることで,交通システム全体の成果を改善する方法に焦点をあてる。
論文 参考訳(メタデータ) (2020-07-06T14:55:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。