論文の概要: Data-Driven Cellular Network Selector for Vehicle Teleoperations
- arxiv url: http://arxiv.org/abs/2410.19791v1
- Date: Tue, 15 Oct 2024 17:32:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:19:38.013933
- Title: Data-Driven Cellular Network Selector for Vehicle Teleoperations
- Title(参考訳): 車両遠隔操作のためのデータ駆動セルネットワークセレクタ
- Authors: Barak Gahtan, Reuven Cohen, Alex M. Bronstein, Eli Shapira,
- Abstract要約: ビデオベースの遠隔操作システムの有効性は,セルラーネットワークの品質に大きく影響されている。
これらのパラメータを最適化するために、AVは複数のセルネットワークに接続でき、各ビデオパケットが送信されるセルネットワークをリアルタイムで決定できる。
本稿では,この問題を解決するために時系列機械学習アプローチを用いた,アクティブネットワークセレクタ(ANS)と呼ばれるアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 7.795761092358769
- License:
- Abstract: Remote control of robotic systems, also known as teleoperation, is crucial for the development of autonomous vehicle (AV) technology. It allows a remote operator to view live video from AVs and, in some cases, to make real-time decisions. The effectiveness of video-based teleoperation systems is heavily influenced by the quality of the cellular network and, in particular, its packet loss rate and latency. To optimize these parameters, an AV can be connected to multiple cellular networks and determine in real time over which cellular network each video packet will be transmitted. We present an algorithm, called Active Network Selector (ANS), which uses a time series machine learning approach for solving this problem. We compare ANS to a baseline non-learning algorithm, which is used today in commercial systems, and show that ANS performs much better, with respect to both packet loss and packet latency.
- Abstract(参考訳): 遠隔操作とも呼ばれるロボットシステムの遠隔操作は、自律走行車(AV)技術の開発に不可欠である。
遠隔操作者は、AVからライブビデオを見ることができ、場合によってはリアルタイムな判断をすることができる。
ビデオベースの遠隔操作システムの有効性は、セルラーネットワークの品質、特にパケット損失率と遅延に大きく影響されている。
これらのパラメータを最適化するために、AVは複数のセルネットワークに接続でき、各ビデオパケットが送信されるセルネットワークをリアルタイムで決定できる。
本稿では,この問題を解決するために時系列機械学習アプローチを用いた,アクティブネットワークセレクタ(ANS)と呼ばれるアルゴリズムを提案する。
我々は、ANSと、今日の商用システムで使われているベースライン非学習アルゴリズムを比較し、パケット損失とパケット遅延の両方に関して、ANSがより優れた性能を示すことを示す。
関連論文リスト
- Cascaded Temporal Updating Network for Efficient Video Super-Resolution [47.63267159007611]
リカレントベースのVSRネットワークにおけるキーコンポーネントはモデル効率に大きな影響を及ぼす。
本稿では,効率的なVSRのための時空間更新ネットワーク(CTUN)を提案する。
CTUNは,従来の方法に比べて効率と性能のトレードオフが良好である。
論文 参考訳(メタデータ) (2024-08-26T12:59:32Z) - Edge Computing Enabled Real-Time Video Analysis via Adaptive
Spatial-Temporal Semantic Filtering [18.55091203660391]
本稿では,インテリジェント・ビジュアル・デバイスのためのエッジ・コンピューティングによるリアルタイム映像解析システムを提案する。
提案システムは,追跡支援対象検出モジュール(TAODM)と興味あるモジュールの領域(ROIM)から構成される。
TAODMは、トラッキングアルゴリズムで各ビデオフレームを局所的に処理するか、オブジェクト検出モデルにより推論されたエッジサーバにオフロードするか、オフロード決定を適応的に決定する。
論文 参考訳(メタデータ) (2024-02-29T07:42:03Z) - Task-Oriented Communication for Edge Video Analytics [11.03999024164301]
本稿では,エッジビデオ分析のためのタスク指向通信フレームワークを提案する。
複数のデバイスが視覚センサデータを収集し、その情報機能をエッジサーバに送信して処理する。
提案手法は,映像データのタスク関連情報を効果的に符号化し,既存の手法よりも高いレート性能のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-11-25T12:09:12Z) - Adaptive QoS of WebRTC for Vehicular Media Communications [0.0]
Web Real-Time Communication (WebRTC)は、車間でのメディアストリーミングに好適な候補である。
本稿では,映像ストリームをネットワーク容量に効率よく適応させる機構について検討する。
適応に異なるアプローチを適用する場合のエンドツーエンドのスループットと反応時間への影響を、実際の5Gテストベッドで分析する。
論文 参考訳(メタデータ) (2022-08-24T09:51:59Z) - Reinforcement Learning for Joint V2I Network Selection and Autonomous
Driving Policies [14.518558523319518]
自動運転車(AV)の信頼性向上に向けたV2I通信の重要性が高まっている
道路衝突を最小限に抑えるため,AVのネットワーク選択と運転ポリシーを同時に最適化することが重要である。
我々は,効率的なネットワーク選択と自律運転ポリシーを特徴付ける強化学習フレームワークを開発した。
論文 参考訳(メタデータ) (2022-08-03T04:33:02Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
理想化されたビデオストリームやキュレートされたビデオストリームの代わりに,リアルタイムで低解像度のCCTVを処理する,リアルタイムな都市規模のマルチカメラ車両追跡システムを提案する。
私たちの手法は、公共のリーダーボードで上位5人のパフォーマーにランク付けされています。
論文 参考訳(メタデータ) (2022-04-15T12:47:01Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - IoV Scenario: Implementation of a Bandwidth Aware Algorithm in Wireless
Network Communication Mode [49.734868032441625]
本稿では,マルチドメイン仮想ネットワーク埋め込みアルゴリズム(BA-VNE)を提案する。
このアルゴリズムは主に、ユーザが無線通信モードで多くの帯域幅を必要とする問題を対象としている。
本アルゴリズムの性能向上のために,粒子群最適化(PSO)アルゴリズムを導入する。
論文 参考訳(メタデータ) (2022-02-03T03:34:06Z) - CANS: Communication Limited Camera Network Self-Configuration for
Intelligent Industrial Surveillance [8.360870648463653]
リアルタイムおよびインテリジェントなカメラネットワークによるビデオ監視には、大量のビデオデータによる計算集約的な視覚検出タスクが含まれる。
複数のビデオストリームは、エッジデバイスとカメラネットワークのリンク上で限られた通信リソースを競う。
ビデオ監視の適応型カメラネットワーク自己設定法(CANS)を提案する。
論文 参考訳(メタデータ) (2021-09-13T01:54:33Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
本稿では,無線モバイルユーザに対して,超信頼性でエネルギー効率のよいバーチャルリアリティ(VR)体験を提供するという課題について検討する。
モバイルユーザへの信頼性の高い超高精細ビデオフレーム配信を実現するために,コーディネートマルチポイント(CoMP)伝送技術とミリ波(mmWave)通信を利用する。
論文 参考訳(メタデータ) (2021-06-03T08:35:10Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
本稿では,エッジノードとリモートノード間のモデル圧縮と時間変化モデル分割を利用して,エッジデバイスにおける総エネルギーコストを削減する手法を提案する。
提案手法は, 検討されたベースラインと比較して, エネルギー消費が最小限であり, 排出コストが$CO$となる。
論文 参考訳(メタデータ) (2021-06-02T07:36:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。