Automatic Classification of Sleep Stages from EEG Signals Using Riemannian Metrics and Transformer Networks
- URL: http://arxiv.org/abs/2410.19819v1
- Date: Fri, 18 Oct 2024 06:49:52 GMT
- Title: Automatic Classification of Sleep Stages from EEG Signals Using Riemannian Metrics and Transformer Networks
- Authors: Mathieu Seraphim, Alexis Lechervy, Florian Yger, Luc Brun, Olivier Etard,
- Abstract summary: In sleep medicine, assessing the evolution of a subject's sleep often involves the costly manual scoring of electroencephalographic (EEG) signals.
We present a novel way of integrating learned signal-wise features into said matrices without sacrificing their Symmetric Definite Positive (SPD) nature.
- Score: 6.404789669795639
- License:
- Abstract: Purpose: In sleep medicine, assessing the evolution of a subject's sleep often involves the costly manual scoring of electroencephalographic (EEG) signals. In recent years, a number of Deep Learning approaches have been proposed to automate this process, mainly by extracting features from said signals. However, despite some promising developments in related problems, such as Brain-Computer Interfaces, analyses of the covariances between brain regions remain underutilized in sleep stage scoring.Methods: Expanding upon our previous work, we investigate the capabilities of SPDTransNet, a Transformer-derived network designed to classify sleep stages from EEG data through timeseries of covariance matrices. Furthermore, we present a novel way of integrating learned signal-wise features into said matrices without sacrificing their Symmetric Definite Positive (SPD) nature.Results: Through comparison with other State-of-the-Art models within a methodology optimized for class-wise performance, we achieve a level of performance at or beyond various State-of-the-Art models, both in single-dataset and - particularly - multi-dataset experiments.Conclusion: In this article, we prove the capabilities of our SPDTransNet model, particularly its adaptability to multi-dataset tasks, within the context of EEG sleep stage scoring - though it could easily be adapted to any classification task involving timeseries of covariance matrices.
Related papers
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
Domain adaptation methods struggle when distribution shifts occur simultaneously in $X$ and $y$.
This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA.
GOPSA has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG.
arXiv Detail & Related papers (2024-07-04T12:15:42Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - Multi-Source Domain Adaptation with Transformer-based Feature Generation
for Subject-Independent EEG-based Emotion Recognition [0.5439020425819]
We propose a multi-source domain adaptation approach with a transformer-based feature generator (MSDA-TF) designed to leverage information from multiple sources.
During the adaptation process, we group the source subjects based on correlation values and aim to align the moments of the target subject with each source as well as within the sources.
MSDA-TF is validated on the SEED dataset and is shown to yield promising results.
arXiv Detail & Related papers (2024-01-04T16:38:47Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - SleepEGAN: A GAN-enhanced Ensemble Deep Learning Model for Imbalanced
Classification of Sleep Stages [4.649202082648198]
This paper develops a generative adversarial network (GAN)-powered ensemble deep learning model, named SleepEGAN, for the imbalanced classification of sleep stages.
We show that the proposed method can improve classification accuracy compared to several existing state-of-the-art methods using three public sleep datasets.
arXiv Detail & Related papers (2023-07-04T01:56:00Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Subject Independent Emotion Recognition using EEG Signals Employing
Attention Driven Neural Networks [2.76240219662896]
A novel deep learning framework capable of doing subject-independent emotion recognition is presented.
A convolutional neural network (CNN) with attention framework is presented for performing the task.
The proposed approach has been validated using publicly available datasets.
arXiv Detail & Related papers (2021-06-07T09:41:15Z) - BENDR: using transformers and a contrastive self-supervised learning
task to learn from massive amounts of EEG data [15.71234837305808]
We consider how to adapt techniques and architectures used for language modelling (LM) to encephalography modelling (EM)
We find that a single pre-trained model is capable of modelling completely novel raw EEG sequences recorded with differing hardware.
Both the internal representations of this model and the entire architecture can be fine-tuned to a variety of downstream BCI and EEG classification tasks.
arXiv Detail & Related papers (2021-01-28T14:54:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.