AEPL: Automated and Editable Prompt Learning for Brain Tumor Segmentation
- URL: http://arxiv.org/abs/2410.19847v1
- Date: Mon, 21 Oct 2024 20:29:44 GMT
- Title: AEPL: Automated and Editable Prompt Learning for Brain Tumor Segmentation
- Authors: Yongheng Sun, Mingxia Liu, Chunfeng Lian,
- Abstract summary: Brain tumor segmentation is crucial for accurate diagnosis and treatment planning.
Existing methods of-ten fail to effectively incorporate medical domain knowledgesuch as tumor grade.
We propose an Automated and Editable Prompt Learning framework that integrates tumor grade into the seg-mentation process.
- Score: 12.347340694969212
- License:
- Abstract: Brain tumor segmentation is crucial for accurate diagnosisand treatment planning, but the small size and irregular shapeof tumors pose significant challenges. Existing methods of-ten fail to effectively incorporate medical domain knowledgesuch as tumor grade, which correlates with tumor aggres-siveness and morphology, providing critical insights for moreaccurate detection of tumor subregions during segmentation.We propose an Automated and Editable Prompt Learning(AEPL) framework that integrates tumor grade into the seg-mentation process by combining multi-task learning andprompt learning with automatic and editable prompt gen-eration. Specifically, AEPL employs an encoder to extractimage features for both tumor-grade prediction and segmen-tation mask generation. The predicted tumor grades serveas auto-generated prompts, guiding the decoder to produceprecise segmentation masks. This eliminates the need formanual prompts while allowing clinicians to manually editthe auto-generated prompts to fine-tune the segmentation,enhancing both flexibility and precision. The proposed AEPLachieves state-of-the-art performance on the BraTS 2018dataset, demonstrating its effectiveness and clinical potential.The source code can be accessed online.
Related papers
- A Holistic Weakly Supervised Approach for Liver Tumor Segmentation with Clinical Knowledge-Informed Label Smoothing [17.798774864007505]
Liver cancer is a leading cause of mortality worldwide.
Deep learning has shown promise for automated liver segmentation.
We present a novel holistic weakly supervised framework to address these challenges.
arXiv Detail & Related papers (2024-10-13T20:52:25Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - A Weakly Supervised and Globally Explainable Learning Framework for Brain Tumor Segmentation [8.253446049933483]
Machine-based brain tumor segmentation can help doctors make better diagnoses.
The complex structure of brain tumors and expensive pixel-level annotations present challenges for automatic tumor segmentation.
We propose a counterfactual generation framework that achieves exceptional brain tumor segmentation performance without the need for pixel-level annotations.
arXiv Detail & Related papers (2024-08-02T11:18:32Z) - Attention-Enhanced Hybrid Feature Aggregation Network for 3D Brain Tumor Segmentation [0.9897828700959131]
Glioblastoma is a highly aggressive and malignant brain tumor type that requires early diagnosis and prompt intervention.
To address this challenge, Artificial Intelligence (AI)-driven approaches in healthcare have generated interest in efficiently diagnosing and evaluating brain tumors.
In our approach, we utilize a multi-scale, attention-guided and hybrid U-Net-shaped model -- GLIMS -- to perform 3D brain tumor segmentation.
arXiv Detail & Related papers (2024-03-15T00:52:17Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Unsupervised Brain Tumor Segmentation with Image-based Prompts [12.525656002678856]
We propose an approach to unsupervised brain tumor segmentation by designing image-based prompts that allow indication of brain tumors.
Instead of directly training a model for brain tumor segmentation with a large amount of annotated data, we seek to train a model that can answer the question: is a voxel in the input image associated with tumor-like hyper-/hypo-intensity?
Since the hand-crafted designs may be too simplistic to represent all kinds of real tumors, the trained model may overfit the simplistic hand-crafted task rather than actually answer the question of abnormality.
arXiv Detail & Related papers (2023-04-04T02:28:25Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
We propose a fast, automated method, with light computational complexity, to find the smallest bounding box around the tumor region.
This region-of-interest can be used as a preprocessing step in training networks for subregion tumor segmentation.
The proposed method is evaluated on the BraTS 2015 dataset, and the average gained DICE score is 0.73, which is an acceptable result for this application.
arXiv Detail & Related papers (2020-02-26T14:10:40Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.