論文の概要: Site-specific Deterministic Temperature and Humidity Forecasts with Explainable and Reliable Machine Learning
- arxiv url: http://arxiv.org/abs/2404.03310v1
- Date: Thu, 4 Apr 2024 09:12:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 15:14:12.801912
- Title: Site-specific Deterministic Temperature and Humidity Forecasts with Explainable and Reliable Machine Learning
- Title(参考訳): 説明可能で信頼性の高い機械学習を用いたサイト固有の決定論的温度と湿度予測
- Authors: MengMeng Han, Tennessee Leeuwenburg, Brad Murphy,
- Abstract要約: 近年の機械学習の発展により、この問題に対する新しいアプローチとしてMLを適用することへの関心が高まっている。
我々は'Multi-SiteBoost'という名前のワーキングMLフレームワークを開発し、初期テストの結果はバイアス補正NWPモデルのグリッド値と比較して大幅に改善された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Site-specific weather forecasts are essential to accurate prediction of power demand and are consequently of great interest to energy operators. However, weather forecasts from current numerical weather prediction (NWP) models lack the fine-scale detail to capture all important characteristics of localised real-world sites. Instead they provide weather information representing a rectangular gridbox (usually kilometres in size). Even after post-processing and bias correction, area-averaged information is usually not optimal for specific sites. Prior work on site optimised forecasts has focused on linear methods, weighted consensus averaging, time-series methods, and others. Recent developments in machine learning (ML) have prompted increasing interest in applying ML as a novel approach towards this problem. In this study, we investigate the feasibility of optimising forecasts at sites by adopting the popular machine learning model gradient boosting decision tree, supported by the Python version of the XGBoost package. Regression trees have been trained with historical NWP and site observations as training data, aimed at predicting temperature and dew point at multiple site locations across Australia. We developed a working ML framework, named 'Multi-SiteBoost' and initial testing results show a significant improvement compared with gridded values from bias-corrected NWP models. The improvement from XGBoost is found to be comparable with non-ML methods reported in literature. With the insights provided by SHapley Additive exPlanations (SHAP), this study also tests various approaches to understand the ML predictions and increase the reliability of the forecasts generated by ML.
- Abstract(参考訳): サイト固有の天気予報は電力需要の正確な予測に不可欠であり、結果としてエネルギー運用者に大きな関心を寄せている。
しかし、現在の数値天気予報(NWP)モデルから得られた天気予報には、局部的な現実世界の全ての重要な特徴を捉えるための詳細な詳細が欠けている。
代わりに、長方形グリッドボックス(通常はキロメートルの大きさ)を表す気象情報を提供する。
後処理やバイアス補正の後にも、地域平均情報は通常特定の場所では最適ではない。
サイト最適化予測の以前の研究は、線形メソッド、重み付けされたコンセンサス平均化、時系列メソッドなどに焦点を当てていた。
近年の機械学習(ML)の発展により、この問題に対する新しいアプローチとしてMLを適用することへの関心が高まっている。
本研究では,XGBoostパッケージのPythonバージョンでサポートされている一般的な機械学習モデル勾配向上決定木を用いて,サイトにおける予測の最適化の実現可能性を検討する。
回帰木は、オーストラリアの複数の場所における温度と露点の予測を目的とした、歴史的NWPとサイト観測のトレーニングデータとして訓練されてきた。
我々は'Multi-SiteBoost'というMLフレームワークを開発し、初期テストの結果はバイアス補正NWPモデルのグリッド値と比較して大幅に改善された。
XGBoostの改善は、文献で報告されている非MLメソッドに匹敵するものである。
SHAP(SHapley Additive exPlanations)の知見により,MLの予測を理解し,MLが生成する予測の信頼性を高めるために,さまざまなアプローチを検証した。
関連論文リスト
- Evaluating Deep Learning Approaches for Predictions in Unmonitored Basins with Continental-scale Stream Temperature Models [1.8067095934521364]
最近の機械学習(ML)モデルは、大規模な空間スケールでの正確な予測に膨大なデータセットを利用することができる。
本研究では,モデル設計とインプットに必要なデータ,および性能向上のためのトレーニングについて考察する。
論文 参考訳(メタデータ) (2024-10-23T15:36:59Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Handling Concept Drift in Global Time Series Forecasting [10.732102570751392]
我々は2つの新しい概念ドリフトハンドリング手法、すなわち、誤り寄与度重み付け(ECW)と勾配降下度重み付け(GDW)を提案する。
これらの手法は、最新のシリーズと全シリーズで個別に訓練された2つの予測モデルを使用し、最終的に2つのモデルが提供する予測の重み付け平均を最終予測と見なす。
論文 参考訳(メタデータ) (2023-04-04T03:46:25Z) - An Interpretable Probabilistic Model for Short-Term Solar Power
Forecasting Using Natural Gradient Boosting [0.0]
本稿では,高精度で信頼性が高く,鋭い予測を生成できる2段階確率予測フレームワークを提案する。
このフレームワークは、ポイント予測と予測間隔(PI)の両方について完全な透明性を提供する。
提案フレームワークの性能と適用性を強調するため,南ドイツにある2つのPV公園の実際のデータを用いている。
論文 参考訳(メタデータ) (2021-08-05T12:59:38Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Machine learning for total cloud cover prediction [0.0]
本稿では,多層パーセプトロン(MLP)ニューラルネットワーク,勾配促進機(GBM)およびランダムフォレスト(RF)法を用いた後処理の性能について検討する。
生のアンサンブルと比較して、全ての校正法は予測スキルを著しく向上させる。
RFモデルは予測性能が最小となる一方、POLRとGBMのアプローチは最良である。
論文 参考訳(メタデータ) (2020-01-16T17:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。