論文の概要: Hypergraph Neural Networks Reveal Spatial Domains from Single-cell Transcriptomics Data
- arxiv url: http://arxiv.org/abs/2410.19868v1
- Date: Wed, 23 Oct 2024 23:32:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:21:56.503789
- Title: Hypergraph Neural Networks Reveal Spatial Domains from Single-cell Transcriptomics Data
- Title(参考訳): ハイパーグラフニューラルネットワークによる単一セルトランスクリプトークスデータからの空間領域の探索
- Authors: Mehrad Soltani, Luis Rueda,
- Abstract要約: 空間的クラスタリングは、組織サンプルを細胞の様々なサブ集団に分類するために重要である。
ILISIスコアは,他の手法と比較して1.843と高い結果が得られた。
我々のモデルは下流クラスタリングにおいて他の手法よりも優れており、最高ARI値は0.51、スコアは0.60である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The task of spatial clustering of transcriptomics data is of paramount importance. It enables the classification of tissue samples into diverse subpopulations of cells, which, in turn, facilitates the analysis of the biological functions of clusters, tissue reconstruction, and cell-cell interactions. Many approaches leverage gene expressions, spatial locations, and histological images to detect spatial domains; however, Graph Neural Networks (GNNs) as state of the art models suffer from a limitation in the assumption of pairwise connections between nodes. In the case of domain detection in spatial transcriptomics, some cells are found to be not directly related. Still, they are grouped as the same domain, which shows the incapability of GNNs for capturing implicit connections among the cells. While graph edges connect only two nodes, hyperedges connect an arbitrary number of nodes along their edges, which lets Hypergraph Neural Networks (HGNNs) capture and utilize richer and more complex structural information than traditional GNNs. We use autoencoders to address the limitation of not having the actual labels, which are well-suited for unsupervised learning. Our model has demonstrated exceptional performance, achieving the highest iLISI score of 1.843 compared to other methods. This score indicates the greatest diversity of cell types identified by our method. Furthermore, our model outperforms other methods in downstream clustering, achieving the highest ARI values of 0.51 and Leiden score of 0.60.
- Abstract(参考訳): 転写学データの空間的クラスタリングの課題は極めて重要である。
組織サンプルを細胞の様々なサブ集団に分類し、クラスターの生物学的機能、組織再構成、細胞-細胞相互作用の解析を容易にする。
多くのアプローチでは、空間領域を検出するために遺伝子発現、空間位置、組織像を利用するが、最先端のモデルとしてのグラフニューラルネットワーク(GNN)は、ノード間のペア接続を仮定する際の制限に悩まされている。
空間転写学におけるドメイン検出の場合、いくつかの細胞は直接関係がない。
それでも、それらは同じドメインとしてグループ化されており、細胞間の暗黙の接続をキャプチャするためのGNNの能力の欠如を示している。
グラフエッジは2つのノードのみを接続するが、ハイパーエッジはエッジに沿って任意の数のノードを接続する。
我々は,教師なし学習に適したラベルがないことの制限に,オートエンコーダを用いて対処する。
ILISIスコアは,他の手法と比較して1.843と高い結果が得られた。
このスコアは,本法で同定された細胞型の最大多様性を示す。
さらに,本モデルでは,下流クラスタリングにおいて,ARI値0.51,ライデンスコア0.60を達成し,他の手法よりも優れていた。
関連論文リスト
- Cell Graph Transformer for Nuclei Classification [78.47566396839628]
我々は,ノードとエッジを入力トークンとして扱うセルグラフ変換器(CGT)を開発した。
不愉快な特徴は、騒々しい自己注意スコアと劣等な収束につながる可能性がある。
グラフ畳み込みネットワーク(GCN)を利用して特徴抽出器を学習する新しいトポロジ対応事前学習法を提案する。
論文 参考訳(メタデータ) (2024-02-20T12:01:30Z) - Population Graph Cross-Network Node Classification for Autism Detection
Across Sample Groups [10.699937593876669]
クロスネットワークノード分類は、ドメインドリフトを考慮に入れたGNN技術を拡張している。
我々は、クロスネットワークノード分類のための強力で斬新なアプローチOTGCNを提案する。
自閉症スペクトラム障害の分類におけるこのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-10T18:04:12Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
本稿では,重要なグラフノード間の接続を強く表現するために,RGBチャネルの特徴値の相互接続性を活用し,GNNとエッジ畳み込みを組み合わせた新しいモデルを提案する。
提案モデルでは,最新のDeep Neural Networks (DNN) と同等に動作するが,1000倍のパラメータが減少し,トレーニング時間とデータ要求が短縮される。
論文 参考訳(メタデータ) (2023-07-24T13:39:21Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Zero-shot Domain Adaptation of Heterogeneous Graphs via Knowledge
Transfer Networks [72.82524864001691]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、強力な表現学習技術として優れた性能を示している。
異なるノードタイプにルートされたラベルを使って直接学習する方法はありません。
本研究では,HGNN(HGNN-KTN)のための新しいドメイン適応手法である知識伝達ネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-03T21:00:23Z) - Graph Neural Network for Cell Tracking in Microscopy Videos [0.0]
顕微鏡ビデオにおける細胞追跡のための新しいグラフニューラルネットワーク(GNN)を提案する。
タイムラプスシーケンス全体を直接グラフとしてモデル化することにより,セルトラジェクトリの集合全体を抽出する。
我々は、異なる生体細胞のインスタンスを区別する細胞特徴ベクトルを抽出するために、ディープメトリック学習アルゴリズムを利用する。
論文 参考訳(メタデータ) (2022-02-09T21:21:48Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - On Local Aggregation in Heterophilic Graphs [11.100606980915144]
我々は,従来のGNNと多層パーセプトロンを適切に調整した手法が,ヘテロ親和性グラフ上の最近の長距離アグリゲーション手法の精度に適合しているか,あるいは超越しているかを示す。
本稿では,新しい情報理論グラフ計量であるNativeborhood Information Content(NIC)メトリックを提案する。
論文 参考訳(メタデータ) (2021-06-06T19:12:31Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
異種ネットワーク表現学習のための高次属性強化グラフニューラルネットワーク(HAEGNN)を提案する。
HAEGNNは、リッチで異質なセマンティクスのためのメタパスとメタグラフを同時に組み込む。
ノード分類、ノードクラスタリング、可視化における最先端の手法よりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-04-16T04:56:38Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
グラフニューラルネットワーク(GNN)は、隣接するノードを集約することでノードの表現を学習する。
オーバースムーシングは、レイヤーの数が増えるにつれてGNNのパフォーマンスが制限される重要な問題のひとつです。
2つのオーバースムースなメトリクスと新しいテクニック、すなわち微分可能群正規化(DGN)を導入する。
論文 参考訳(メタデータ) (2020-06-12T07:18:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。