Urban Mobility: AI, ODE-Based Modeling, and Scenario Planning
- URL: http://arxiv.org/abs/2410.19915v1
- Date: Fri, 25 Oct 2024 18:09:02 GMT
- Title: Urban Mobility: AI, ODE-Based Modeling, and Scenario Planning
- Authors: Katsiaryna Bahamazava,
- Abstract summary: We quantify the impact of AI innovations, such as autonomous vehicles and intelligent traffic management, on reducing traffic congestion under different regulatory conditions.
Our ODE models capture the dynamic relationship between AI adoption rates and traffic congestion, providing quantitative insights into how future scenarios might unfold.
This study contributes to understanding how foresight, scenario planning, and ODE modeling can inform strategies for creating more efficient, sustainable, and livable cities through AI adoption.
- Score: 0.0
- License:
- Abstract: Urbanization and technological advancements are reshaping the future of urban mobility, presenting both challenges and opportunities. This paper combines foresight and scenario planning with mathematical modeling using Ordinary Differential Equations (ODEs) to explore how Artificial Intelligence (AI)-driven technologies can transform transportation systems. By simulating ODE-based models in Python, we quantify the impact of AI innovations, such as autonomous vehicles and intelligent traffic management, on reducing traffic congestion under different regulatory conditions. Our ODE models capture the dynamic relationship between AI adoption rates and traffic congestion, providing quantitative insights into how future scenarios might unfold. By incorporating industry collaborations and case studies, we offer strategic guidance for businesses and policymakers navigating this evolving landscape. This study contributes to understanding how foresight, scenario planning, and ODE modeling can inform strategies for creating more efficient, sustainable, and livable cities through AI adoption.
Related papers
- Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
World models and video generation are pivotal technologies in the domain of autonomous driving.
This paper investigates the relationship between these two technologies.
By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions.
arXiv Detail & Related papers (2024-11-05T08:58:35Z) - GenAI-powered Multi-Agent Paradigm for Smart Urban Mobility: Opportunities and Challenges for Integrating Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) with Intelligent Transportation Systems [10.310791311301962]
This paper explores the transformative potential of large language models (LLMs) and emerging Retrieval-Augmented Generation (RAG) technologies.
We propose a conceptual framework aimed at developing multi-agent systems capable of intelligently and conversationally delivering smart mobility services.
arXiv Detail & Related papers (2024-08-31T16:14:42Z) - Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments [16.587883982785]
The continual evolution of autonomous driving technology requires car-following models that can adapt to diverse and dynamic traffic environments.
Traditional learning-based models often suffer from performance degradation when encountering unseen traffic patterns due to a lack of continual learning capabilities.
This paper proposes a novel car-following model based on continual learning that addresses this limitation.
arXiv Detail & Related papers (2024-07-17T06:32:52Z) - A Survey of Generative AI for Intelligent Transportation Systems: Road Transportation Perspective [7.770651543578893]
We introduce the principles of different generative AI techniques.
We classify tasks in ITS into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making.
We illustrate how generative AI techniques addresses key issues in these four different types of tasks.
arXiv Detail & Related papers (2023-12-13T16:13:23Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Graph Neural Network Reinforcement Learning for Autonomous
Mobility-on-Demand Systems [42.08603087208381]
We argue that the AMoD control problem is naturally cast as a node-wise decision-making problem.
We propose a deep reinforcement learning framework to control the rebalancing of AMoD systems through graph neural networks.
We show how the learned policies exhibit promising zero-shot transfer capabilities when faced with critical portability tasks.
arXiv Detail & Related papers (2021-04-23T06:42:38Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCC ideates on a data-centered society aiming at improving efficiency by automating and optimizing activities and utilities.
This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control.
arXiv Detail & Related papers (2021-04-07T14:31:08Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Delta Schema Network in Model-based Reinforcement Learning [125.99533416395765]
This work is devoted to unresolved problems of Artificial General Intelligence - the inefficiency of transfer learning.
We are expanding the schema networks method which allows to extract the logical relationships between objects and actions from the environment data.
We present algorithms for training a Delta Network (DSN), predicting future states of the environment and planning actions that will lead to positive reward.
arXiv Detail & Related papers (2020-06-17T15:58:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.