論文の概要: OReole-FM: successes and challenges toward billion-parameter foundation models for high-resolution satellite imagery
- arxiv url: http://arxiv.org/abs/2410.19965v1
- Date: Fri, 25 Oct 2024 20:55:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:15:51.972692
- Title: OReole-FM: successes and challenges toward billion-parameter foundation models for high-resolution satellite imagery
- Title(参考訳): OReole-FM:高解像度衛星画像のための10億パラメータ基礎モデルの成功と課題
- Authors: Philipe Dias, Aristeidis Tsaris, Jordan Bowman, Abhishek Potnis, Jacob Arndt, H. Lexie Yang, Dalton Lunga,
- Abstract要約: 数十億のパラメータにモデルをスケールすることは、創発的能力を含む前例のない利益をもたらすことが示されている。
我々は、Frontierスーパーコンピュータ、アメリカ初のエクサスケールシステム、および10億スケールのFMを事前トレーニングするために高解像度の光学RSデータを含む高性能コンピューティングリソースをペアリングする。
- 参考スコア(独自算出の注目度): 0.3926357402982764
- License:
- Abstract: While the pretraining of Foundation Models (FMs) for remote sensing (RS) imagery is on the rise, models remain restricted to a few hundred million parameters. Scaling models to billions of parameters has been shown to yield unprecedented benefits including emergent abilities, but requires data scaling and computing resources typically not available outside industry R&D labs. In this work, we pair high-performance computing resources including Frontier supercomputer, America's first exascale system, and high-resolution optical RS data to pretrain billion-scale FMs. Our study assesses performance of different pretrained variants of vision Transformers across image classification, semantic segmentation and object detection benchmarks, which highlight the importance of data scaling for effective model scaling. Moreover, we discuss construction of a novel TIU pretraining dataset, model initialization, with data and pretrained models intended for public release. By discussing technical challenges and details often lacking in the related literature, this work is intended to offer best practices to the geospatial community toward efficient training and benchmarking of larger FMs.
- Abstract(参考訳): リモートセンシング(RS)画像のためのファンデーションモデル(FM)の事前訓練が増加しているが、モデルは数億のパラメータに限定されている。
数十億のパラメータにモデルをスケーリングすることは、創発的な能力を含む前例のない利益をもたらすことが示されているが、データスケーリングと計算リソースは、通常、産業R&Dラボ以外では利用できない。
本研究では,アメリカ初のエクサスケールシステムであるフロンティア・スーパーコンピュータや,10億スケールのFMを事前学習するための高分解能光RSデータなど,高性能な計算資源をペアリングする。
本研究は,画像分類,セマンティックセグメンテーション,オブジェクト検出ベンチマークにまたがる様々な事前訓練された視覚変換器の性能を評価し,効率的なモデルスケーリングのためのデータスケーリングの重要性を強調した。
さらに、新しいTIU事前学習データセットの構築、モデル初期化、および公開リリースを目的としたデータおよび事前学習モデルについて論じる。
関連文献にしばしば欠落する技術的な課題と詳細を議論することで、この研究は、より大規模なFMの効率的なトレーニングとベンチマークに向けて、地理空間のコミュニティにベストプラクティスを提供することを目的としている。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - AI Foundation Models in Remote Sensing: A Survey [6.036426846159163]
本稿では,リモートセンシング領域における基礎モデルの包括的調査を行う。
コンピュータビジョンおよびドメイン固有タスクにおけるそれらの応用に基づいて、これらのモデルを分類する。
これらの基盤モデルによって達成された、新しいトレンドと大きな進歩を強調します。
論文 参考訳(メタデータ) (2024-08-06T22:39:34Z) - Pretraining Billion-scale Geospatial Foundational Models on Frontier [0.16492989697868893]
ファンデーションモデル(FM)は、自己教師付き学習を通じて、インターネットスケールの未ラベルデータで訓練される。
本研究では,空間的応用のための10億規模のFMとHPCトレーニングプロファイルを,公開データの事前学習により検討する。
我々のより大きな3Bパラメータサイズモデルでは、トップ1シーンの分類精度が最大30%向上する。
論文 参考訳(メタデータ) (2024-04-17T19:16:32Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
事前訓練されたモデルの任意のペアリングに対して、一方のモデルは他方では利用できない重要なデータコンテキストを抽出する。
このような「補的」な知識を,性能劣化を伴わずに,あるモデルから別のモデルへ伝達できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-10-26T17:59:46Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
視覚認識のためのマスク付き画像モデリング(MIM)手法のスケーリング能力に関する実証的研究を行った。
具体的には、Webで収集したCoyo-700Mデータセットを利用する。
我々のゴールは、データとモデルのサイズの異なるスケールでダウンストリームタスクのパフォーマンスがどのように変化するかを調べることです。
論文 参考訳(メタデータ) (2023-05-24T15:33:46Z) - Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data [0.0]
生成モデルは現実的なイメージの作成に優れていますが、トレーニングのための広範なデータセットに依存しているため、大きな課題があります。
現在のデータ効率の手法はGANアーキテクチャに重点を置いており、他の生成モデルの訓練にギャップを残している。
位相データ拡張(phased data augmentation)は、このギャップに対処する新しい手法であり、データ分散に固有の変更を加えることなく、限られたデータシナリオでのトレーニングを最適化する。
論文 参考訳(メタデータ) (2023-05-22T03:38:59Z) - A Billion-scale Foundation Model for Remote Sensing Images [5.065947993017157]
基礎モデルの事前学習における3つの重要な要因は、事前学習方法、事前学習データセットのサイズ、モデルパラメータの数である。
本稿では,下流タスクにおける基礎モデルの性能に及ぼすモデルパラメータ数の増加の影響について検討する。
我々の知る限りでは、これはリモートセンシング分野における最初の10億ドル規模の基礎モデルである。
論文 参考訳(メタデータ) (2023-04-11T13:33:45Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - The effectiveness of MAE pre-pretraining for billion-scale pretraining [65.98338857597935]
モデルの初期化には自己教師付きMAE技術を用いる。
画像分類, 映像認識, 物体検出, ローショット分類, ゼロショット認識にまたがる10種類の視覚的タスクに対して, 事前学習の有効性を評価する。
論文 参考訳(メタデータ) (2023-03-23T17:56:12Z) - Advancing Plain Vision Transformer Towards Remote Sensing Foundation
Model [97.9548609175831]
約1億のパラメータを持つプレーンビジョントランスフォーマーを利用して、リモートセンシングタスク用にカスタマイズされた大規模なビジョンモデルを提案する。
具体的には、RS画像における大きな画像サイズと様々な向きのオブジェクトを扱うために、回転する様々なウィンドウアテンションを提案する。
検出タスクの実験は、DOTA-V1.0データセット上で81.16%のmAPを達成したすべての最先端モデルよりも、我々のモデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-08-08T09:08:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。