FLOW: A Feedback LOop FrameWork for Simultaneously Enhancing Recommendation and User Agents
- URL: http://arxiv.org/abs/2410.20027v1
- Date: Sat, 26 Oct 2024 00:51:39 GMT
- Title: FLOW: A Feedback LOop FrameWork for Simultaneously Enhancing Recommendation and User Agents
- Authors: Shihao Cai, Jizhi Zhang, Keqin Bao, Chongming Gao, Fuli Feng,
- Abstract summary: We propose a novel framework named FLOW, which achieves collaboration between the recommendation agent and the user agent by introducing a feedback loop.
Specifically, the recommendation agent refines its understanding of the user's preferences by analyzing the user agent's feedback on previously suggested items.
This iterative refinement process enhances the reasoning capabilities of both the recommendation agent and the user agent, enabling more precise recommendations.
- Score: 28.25107058257086
- License:
- Abstract: Agents powered by large language models have shown remarkable reasoning and execution capabilities, attracting researchers to explore their potential in the recommendation domain. Previous studies have primarily focused on enhancing the capabilities of either recommendation agents or user agents independently, but have not considered the interaction and collaboration between recommendation agents and user agents. To address this gap, we propose a novel framework named FLOW, which achieves collaboration between the recommendation agent and the user agent by introducing a feedback loop. Specifically, the recommendation agent refines its understanding of the user's preferences by analyzing the user agent's feedback on previously suggested items, while the user agent leverages suggested items to uncover deeper insights into the user's latent interests. This iterative refinement process enhances the reasoning capabilities of both the recommendation agent and the user agent, enabling more precise recommendations and a more accurate simulation of user behavior. To demonstrate the effectiveness of the feedback loop, we evaluate both recommendation performance and user simulation performance on three widely used recommendation domain datasets. The experimental results indicate that the feedback loop can simultaneously improve the performance of both the recommendation and user agents.
Related papers
- Prospect Personalized Recommendation on Large Language Model-based Agent
Platform [71.73768586184404]
We introduce a novel recommendation paradigm called Rec4Agentverse, comprised of Agent Items and Agent Recommender.
Rec4Agentverse emphasizes the collaboration between Agent Items and Agent Recommender, thereby promoting personalized information services.
A preliminary study involving several cases of Rec4Agentverse validates its significant potential for application.
arXiv Detail & Related papers (2024-02-28T11:12:17Z) - MACRec: a Multi-Agent Collaboration Framework for Recommendation [21.425320819792912]
We introduce MACRec, a novel framework designed to enhance recommendation systems through multi-agent collaboration.
Unlike existing work on using agents for user/item simulation, we aim to deploy multi-agents to tackle recommendation tasks directly.
We provide application examples of how developers can easily use MACRec on various recommendation tasks, including rating prediction, sequential recommendation, conversational recommendation, and explanation generation of recommendation results.
arXiv Detail & Related papers (2024-02-23T09:57:20Z) - Interactive Garment Recommendation with User in the Loop [77.35411131350833]
We propose to build a user profile on the fly by integrating user reactions as we recommend complementary items to compose an outfit.
We present a reinforcement learning agent capable of suggesting appropriate garments and ingesting user feedback to improve its recommendations.
arXiv Detail & Related papers (2024-02-18T16:01:28Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions.
We introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries.
We empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals.
arXiv Detail & Related papers (2024-02-14T14:36:30Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Rec is a user simulator in recommendation based on Large Language Models.
Each agent interacts with personalized recommender models in a page-by-page manner.
arXiv Detail & Related papers (2023-10-16T06:41:16Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - Learning from Negative User Feedback and Measuring Responsiveness for
Sequential Recommenders [13.762960304406016]
We introduce explicit and implicit negative user feedback into the training objective of sequential recommenders.
We demonstrate the effectiveness of this approach using live experiments on a large-scale industrial recommender system.
arXiv Detail & Related papers (2023-08-23T17:16:07Z) - Editable User Profiles for Controllable Text Recommendation [66.00743968792275]
We propose LACE, a novel concept value bottleneck model for controllable text recommendations.
LACE represents each user with a succinct set of human-readable concepts.
It learns personalized representations of the concepts based on user documents.
arXiv Detail & Related papers (2023-04-09T14:52:18Z) - D2RLIR : an improved and diversified ranking function in interactive
recommendation systems based on deep reinforcement learning [0.3058685580689604]
This paper proposes a deep reinforcement learning based recommendation system by utilizing Actor-Critic architecture.
The proposed model is able to generate a diverse while relevance recommendation list based on the user's preferences.
arXiv Detail & Related papers (2021-10-28T13:11:29Z) - Towards Content Provider Aware Recommender Systems: A Simulation Study
on the Interplay between User and Provider Utilities [34.288256311920904]
We build a REINFORCE recommender agent, coined EcoAgent, to optimize a joint objective of user utility and the counterfactual utility lift of the provider associated with the recommended content.
We offer a number of simulated experiments that shed light on both the benefits and the limitations of our approach.
arXiv Detail & Related papers (2021-05-06T00:02:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.