論文の概要: Annotation Efficiency: Identifying Hard Samples via Blocked Sparse Linear Bandits
- arxiv url: http://arxiv.org/abs/2410.20041v1
- Date: Sat, 26 Oct 2024 01:42:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:21:53.818013
- Title: Annotation Efficiency: Identifying Hard Samples via Blocked Sparse Linear Bandits
- Title(参考訳): アノテーション効率:ブロックされたスパース線形帯域によるハードサンプルの同定
- Authors: Adit Jain, Soumyabrata Pal, Sunav Choudhary, Ramasuri Narayanam, Vikram Krishnamurthy,
- Abstract要約: 本稿では,ラベル・スカース・セッティングにおいて,少数のアノテーションラウンドしか持たない専門家によるアノテートデータポイントの問題について考察する。
そこで本稿では,データポイントの注釈付けの難しさに対する信頼性の高いフィードバックを,基礎的な真理ラベルに加えて専門家に提案する。
- 参考スコア(独自算出の注目度): 23.329605738829947
- License:
- Abstract: This paper considers the problem of annotating datapoints using an expert with only a few annotation rounds in a label-scarce setting. We propose soliciting reliable feedback on difficulty in annotating a datapoint from the expert in addition to ground truth label. Existing literature in active learning or coreset selection turns out to be less relevant to our setting since they presume the existence of a reliable trained model, which is absent in the label-scarce regime. However, the literature on coreset selection emphasizes the presence of difficult data points in the training set to perform supervised learning in downstream tasks (Mindermann et al., 2022). Therefore, for a given fixed annotation budget of $\mathsf{T}$ rounds, we model the sequential decision-making problem of which (difficult) datapoints to choose for annotation in a sparse linear bandits framework with the constraint that no arm can be pulled more than once (blocking constraint). With mild assumptions on the datapoints, our (computationally efficient) Explore-Then-Commit algorithm BSLB achieves a regret guarantee of $\widetilde{\mathsf{O}}(k^{\frac{1}{3}} \mathsf{T}^{\frac{2}{3}} +k^{-\frac{1}{2}} \beta_k + k^{-\frac{1}{12}} \beta_k^{\frac{1}{2}}\mathsf{T}^{\frac{5}{6}})$ where the unknown parameter vector has tail magnitude $\beta_k$ at sparsity level $k$. To this end, we show offline statistical guarantees of Lasso estimator with mild Restricted Eigenvalue (RE) condition that is also robust to sparsity. Finally, we propose a meta-algorithm C-BSLB that does not need knowledge of the optimal sparsity parameters at a no-regret cost. We demonstrate the efficacy of our BSLB algorithm for annotation in the label-scarce setting for an image classification task on the PASCAL-VOC dataset, where we use real-world annotation difficulty scores.
- Abstract(参考訳): 本稿では,ラベル・スカース・セッティングにおいて,少数のアノテーション・ラウンドしか持たない専門家によるアノテート・データポイントの問題点について考察する。
そこで本稿では,データポイントの注釈付けの難しさに対する信頼性の高いフィードバックを,基礎的な真理ラベルに加えて専門家に提案する。
アクティブラーニングやコアセット選択における既存の文献は、ラベル・スカース体制にない信頼性のあるトレーニングモデルの存在を前提にしているため、私たちの設定にはあまり関係がないことが判明した。
しかし、コアセット選択に関する文献では、下流タスクで教師あり学習を行う訓練セットに難しいデータポイントが存在することが強調されている(Mindermann et al , 2022)。
したがって、所定の固定アノテーション予算である$\mathsf{T}$ラウンドに対して、厳密な線形バンディットフレームワークにおけるアノテーションを選択するための(難易度の高い)データポイントが1回以上腕を引けないという制約(ブロッキング制約)をモデル化する。
データポイントの軽度な仮定により、我々の(計算効率が良い)Explore-Then-Commitアルゴリズム BSLBは、$\widetilde{\mathsf{O}}(k^{\frac{1}{3}} \mathsf{T}^{\frac{2}{3}} +k^{-\frac{1}{2}} \beta_k +k^{-\frac{1}{12}} \beta_k^{\frac{1}{2}}\mathsf{T}^{\frac{5}{6}})$ の後悔の保証を得る。
この目的のために、スペーサ性にも頑健な緩和固有値(RE)条件を持つラッソ推定器のオフライン統計保証を示す。
最後に,最適空間パラメータの知識を必要としないメタアルゴリズムC-BSLBを提案する。
PASCAL-VOCデータセットにおける画像分類タスクのラベルスカース設定におけるアノテーションに対するBSLBアルゴリズムの有効性を示す。
関連論文リスト
- Dirichlet-Based Prediction Calibration for Learning with Noisy Labels [40.78497779769083]
雑音ラベルによる学習はディープニューラルネットワーク(DNN)の一般化性能を著しく損なう
既存のアプローチでは、損失補正やサンプル選択手法によってこの問題に対処している。
そこで我々は,textitDirichlet-based Prediction (DPC) 法を解法として提案する。
論文 参考訳(メタデータ) (2024-01-13T12:33:04Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
本稿では,ラベルの少ない新しい学習環境である,画像分類のための1ビット監督について述べる。
多段階学習パラダイムを提案し、負ラベル抑圧を半教師付き半教師付き学習アルゴリズムに組み込む。
複数のベンチマークにおいて、提案手法の学習効率は、フルビットの半教師付き監視手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-26T07:39:00Z) - Provably Efficient High-Dimensional Bandit Learning with Batched
Feedbacks [93.00280593719513]
本稿では,オンラインインタラクションのT$ステップをバッチに分割したバッチフィードバックによる高次元マルチアームコンテキストバンドレットについて検討する。
具体的には、各バッチは以前のバッチに依存するポリシーに従ってデータを収集し、その報酬はバッチの最後にのみ明らかにする。
我々のアルゴリズムは,$mathcalO( log T)$ バッチで完全に逐次的に設定されたものに匹敵する後悔の限界を達成している。
論文 参考訳(メタデータ) (2023-11-22T06:06:54Z) - Optimal Best-Arm Identification in Bandits with Access to Offline Data [27.365122983434887]
オフラインデータとオンライン学習を組み合わせることを検討する。
差分$が小さい場合、サンプルの複雑さに基づいて低い境界に一致するアルゴリズムを開発する。
我々のアルゴリズムは, サンプル当たりの平均取得コストが$tildeO(K)$で計算的に効率的であり, 下界問題の最適条件の注意深い評価に頼っている。
論文 参考訳(メタデータ) (2023-06-15T11:12:35Z) - Exploring Active 3D Object Detection from a Generalization Perspective [58.597942380989245]
不確実性に基づくアクティブな学習ポリシーは、ポイントクラウドの情報性とボックスレベルのアノテーションコストの間のトレードオフのバランスを取れません。
冗長な3次元境界ボックスラベルの点群を階層的にフィルタリングするtextscCrbを提案する。
実験により,提案手法が既存のアクティブラーニング戦略より優れていることが示された。
論文 参考訳(メタデータ) (2023-01-23T02:43:03Z) - Stochastic Contextual Dueling Bandits under Linear Stochastic
Transitivity Models [25.336599480692122]
我々は,コンテキスト情報を用いた決闘バンディット問題における後悔の最小化タスクについて検討する。
本稿では,フィードバックプロセスの模倣に基づく計算効率のよいアルゴリズムである$texttCoLSTIM$を提案する。
本実験は,CoLSTモデルの特殊事例に対する最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-09T17:44:19Z) - SparseDet: Improving Sparsely Annotated Object Detection with
Pseudo-positive Mining [76.95808270536318]
Pseudo- positive mining を用いてラベル付き地域とラベルなし地域を分離するエンド・ツー・エンドシステムを提案する。
ラベル付き領域は通常通り処理されるが、ラベルなし領域の処理には自己教師付き学習が使用される。
我々は,PASCAL-VOCとCOCOデータセットの5つの分割に対して,最先端の性能を達成するための徹底的な実験を行った。
論文 参考訳(メタデータ) (2022-01-12T18:57:04Z) - Efficient Learning in Non-Stationary Linear Markov Decision Processes [17.296084954104415]
非定常線形(低ランク)マルコフ決定過程(MDP)におけるエピソード強化学習の研究
OPT-WLSVI は最小二乗の重み付け値に基づく楽観的なモデルフリーのアルゴリズムであり、指数重み付けを用いて過去のデータをスムーズに忘れる。
我々のアルゴリズムは、各時点で最高のポリシーと競合するときに、$d$$$widetildemathcalO(d5/4H2 Delta1/4 K3/4)$で上限付けられた後悔を実現する。
論文 参考訳(メタデータ) (2020-10-24T11:02:45Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
本研究では,高次元線形モデルの下での文脈的帯域問題について考察する。
この設定は、パーソナライズされたレコメンデーション、オンライン広告、パーソナライズされた医療など、不可欠な応用を見出す。
本稿では,最適部分集合選択法を用いて2重成長エポックを推定する手法を提案する。
論文 参考訳(メタデータ) (2020-09-04T04:10:39Z) - Stochastic Bandits with Linear Constraints [69.757694218456]
制約付き文脈線形帯域設定について検討し、エージェントの目標は一連のポリシーを作成することである。
楽観的悲観的線形帯域(OPLB)と呼ばれる,この問題に対する高信頼束縛アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-17T22:32:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。