論文の概要: Sparse Linear Bandits with Blocking Constraints
- arxiv url: http://arxiv.org/abs/2410.20041v2
- Date: Thu, 29 May 2025 04:23:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.324793
- Title: Sparse Linear Bandits with Blocking Constraints
- Title(参考訳): ブロック制約付きスパースリニアバンド
- Authors: Adit Jain, Soumyabrata Pal, Sunav Choudhary, Ramasuri Narayanam, Harshita Chopra, Vikram Krishnamurthy,
- Abstract要約: データ・ポーア・システマにおける高次元スパース線形包帯問題について検討する。
線形モデルに対するラッソ推定器の新たなオフライン統計的保証を示す。
本稿では,最小限のコストで最適空間パラメータ$k$の知識を必要としない相関に基づくメタアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 22.01704171400845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the high-dimensional sparse linear bandits problem in a data-poor regime where the time horizon is much smaller than the ambient dimension and number of arms. We study the setting under the additional blocking constraint where each unique arm can be pulled only once. The blocking constraint is motivated by practical applications in personalized content recommendation and identification of data points to improve annotation efficiency for complex learning tasks. With mild assumptions on the arms, our proposed online algorithm (BSLB) achieves a regret guarantee of $\widetilde{\mathsf{O}}((1+\beta_k)^2k^{\frac{2}{3}} \mathsf{T}^{\frac{2}{3}})$ where the parameter vector has an (unknown) relative tail $\beta_k$ -- the ratio of $\ell_1$ norm of the top-$k$ and remaining entries of the parameter vector. To this end, we show novel offline statistical guarantees of the lasso estimator for the linear model that is robust to the sparsity modeling assumption. Finally, we propose a meta-algorithm (C-BSLB) based on corralling that does not need knowledge of optimal sparsity parameter $k$ at minimal cost to regret. Our experiments on multiple real-world datasets demonstrate the validity of our algorithms and theoretical framework.
- Abstract(参考訳): 時間地平線が周囲の寸法や腕の数よりもはるかに小さいデータ・ポーア・システムにおける高次元スパース線形包帯問題について検討する。
我々は、各ユニークなアームを1回だけ引くことができる追加のブロッキング制約の下で、設定について検討する。
ブロック制約は、複雑な学習タスクのアノテーション効率を向上させるために、パーソナライズされたコンテンツレコメンデーションとデータポイントの識別において実践的な応用によって動機付けられている。
提案したオンラインアルゴリズム(BSLB)は、アーム上の軽微な仮定により、$\widetilde{\mathsf{O}}((1+\beta_k)^2k^{\frac{2}{3}} \mathsf{T}^{\frac{2}{3}})$の後悔の保証を達成する。
この結果から, 線形モデルに対するラッソ推定器の新たなオフライン統計的保証が, 疎度モデリングの仮定に頑健であることを示す。
最後に,最適空間パラメータの知識を必要としない相関に基づくメタアルゴリズム(C-BSLB)を提案する。
複数の実世界のデータセットに対する我々の実験は、我々のアルゴリズムと理論的枠組みの有効性を実証している。
関連論文リスト
- Dirichlet-Based Prediction Calibration for Learning with Noisy Labels [40.78497779769083]
雑音ラベルによる学習はディープニューラルネットワーク(DNN)の一般化性能を著しく損なう
既存のアプローチでは、損失補正やサンプル選択手法によってこの問題に対処している。
そこで我々は,textitDirichlet-based Prediction (DPC) 法を解法として提案する。
論文 参考訳(メタデータ) (2024-01-13T12:33:04Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
本稿では,ラベルの少ない新しい学習環境である,画像分類のための1ビット監督について述べる。
多段階学習パラダイムを提案し、負ラベル抑圧を半教師付き半教師付き学習アルゴリズムに組み込む。
複数のベンチマークにおいて、提案手法の学習効率は、フルビットの半教師付き監視手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-26T07:39:00Z) - Provably Efficient High-Dimensional Bandit Learning with Batched
Feedbacks [93.00280593719513]
本稿では,オンラインインタラクションのT$ステップをバッチに分割したバッチフィードバックによる高次元マルチアームコンテキストバンドレットについて検討する。
具体的には、各バッチは以前のバッチに依存するポリシーに従ってデータを収集し、その報酬はバッチの最後にのみ明らかにする。
我々のアルゴリズムは,$mathcalO( log T)$ バッチで完全に逐次的に設定されたものに匹敵する後悔の限界を達成している。
論文 参考訳(メタデータ) (2023-11-22T06:06:54Z) - Optimal Best-Arm Identification in Bandits with Access to Offline Data [27.365122983434887]
オフラインデータとオンライン学習を組み合わせることを検討する。
差分$が小さい場合、サンプルの複雑さに基づいて低い境界に一致するアルゴリズムを開発する。
我々のアルゴリズムは, サンプル当たりの平均取得コストが$tildeO(K)$で計算的に効率的であり, 下界問題の最適条件の注意深い評価に頼っている。
論文 参考訳(メタデータ) (2023-06-15T11:12:35Z) - Exploring Active 3D Object Detection from a Generalization Perspective [58.597942380989245]
不確実性に基づくアクティブな学習ポリシーは、ポイントクラウドの情報性とボックスレベルのアノテーションコストの間のトレードオフのバランスを取れません。
冗長な3次元境界ボックスラベルの点群を階層的にフィルタリングするtextscCrbを提案する。
実験により,提案手法が既存のアクティブラーニング戦略より優れていることが示された。
論文 参考訳(メタデータ) (2023-01-23T02:43:03Z) - Stochastic Contextual Dueling Bandits under Linear Stochastic
Transitivity Models [25.336599480692122]
我々は,コンテキスト情報を用いた決闘バンディット問題における後悔の最小化タスクについて検討する。
本稿では,フィードバックプロセスの模倣に基づく計算効率のよいアルゴリズムである$texttCoLSTIM$を提案する。
本実験は,CoLSTモデルの特殊事例に対する最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-09T17:44:19Z) - SparseDet: Improving Sparsely Annotated Object Detection with
Pseudo-positive Mining [76.95808270536318]
Pseudo- positive mining を用いてラベル付き地域とラベルなし地域を分離するエンド・ツー・エンドシステムを提案する。
ラベル付き領域は通常通り処理されるが、ラベルなし領域の処理には自己教師付き学習が使用される。
我々は,PASCAL-VOCとCOCOデータセットの5つの分割に対して,最先端の性能を達成するための徹底的な実験を行った。
論文 参考訳(メタデータ) (2022-01-12T18:57:04Z) - Efficient Learning in Non-Stationary Linear Markov Decision Processes [17.296084954104415]
非定常線形(低ランク)マルコフ決定過程(MDP)におけるエピソード強化学習の研究
OPT-WLSVI は最小二乗の重み付け値に基づく楽観的なモデルフリーのアルゴリズムであり、指数重み付けを用いて過去のデータをスムーズに忘れる。
我々のアルゴリズムは、各時点で最高のポリシーと競合するときに、$d$$$widetildemathcalO(d5/4H2 Delta1/4 K3/4)$で上限付けられた後悔を実現する。
論文 参考訳(メタデータ) (2020-10-24T11:02:45Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
本研究では,高次元線形モデルの下での文脈的帯域問題について考察する。
この設定は、パーソナライズされたレコメンデーション、オンライン広告、パーソナライズされた医療など、不可欠な応用を見出す。
本稿では,最適部分集合選択法を用いて2重成長エポックを推定する手法を提案する。
論文 参考訳(メタデータ) (2020-09-04T04:10:39Z) - Stochastic Bandits with Linear Constraints [69.757694218456]
制約付き文脈線形帯域設定について検討し、エージェントの目標は一連のポリシーを作成することである。
楽観的悲観的線形帯域(OPLB)と呼ばれる,この問題に対する高信頼束縛アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-17T22:32:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。