論文の概要: FedMABA: Towards Fair Federated Learning through Multi-Armed Bandits Allocation
- arxiv url: http://arxiv.org/abs/2410.20141v1
- Date: Sat, 26 Oct 2024 10:41:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:23:04.404380
- Title: FedMABA: Towards Fair Federated Learning through Multi-Armed Bandits Allocation
- Title(参考訳): FedMABA:マルチアーメッド・バンド・アロケーションによる公正なフェデレーション・ラーニングを目指して
- Authors: Zhichao Wang, Lin Wang, Yongxin Guo, Ying-Jun Angela Zhang, Xiaoying Tang,
- Abstract要約: 本稿では,対戦型マルチアームバンディットの概念を導入し,性能格差を明示した制約で提案対象を最適化する。
そこで本研究では,データ分散の異なる多種多様なクライアント間での性能不公平さを軽減するために,新しいマルチアーム帯域割り当てFLアルゴリズム(FedMABA)を提案する。
- 参考スコア(独自算出の注目度): 26.52731463877256
- License:
- Abstract: The increasing concern for data privacy has driven the rapid development of federated learning (FL), a privacy-preserving collaborative paradigm. However, the statistical heterogeneity among clients in FL results in inconsistent performance of the server model across various clients. Server model may show favoritism towards certain clients while performing poorly for others, heightening the challenge of fairness. In this paper, we reconsider the inconsistency in client performance distribution and introduce the concept of adversarial multi-armed bandit to optimize the proposed objective with explicit constraints on performance disparities. Practically, we propose a novel multi-armed bandit-based allocation FL algorithm (FedMABA) to mitigate performance unfairness among diverse clients with different data distributions. Extensive experiments, in different Non-I.I.D. scenarios, demonstrate the exceptional performance of FedMABA in enhancing fairness.
- Abstract(参考訳): データプライバシに対する懸念の高まりにより、プライバシを保存するコラボレーションパラダイムであるフェデレートラーニング(FL)の急速な開発が進められている。
しかし、FLにおけるクライアント間の統計的不均一性は、様々なクライアント間でサーバモデルの一貫性のない性能をもたらす。
サーバモデルは、特定のクライアントに対して好意的でありながら、他の人にとって不利なパフォーマンスを示し、公正性の課題を高めます。
本稿では,クライアントの性能分布の不整合性を再考し,性能格差の明示的な制約を伴って提案した目的を最適化するために,敵のマルチアームバンディットの概念を導入する。
そこで本研究では,データ分散の異なる多種多様なクライアント間での性能不公平さを軽減するために,新しいマルチアーム帯域割り当てFLアルゴリズム(FedMABA)を提案する。
様々な非I.I.D.シナリオにおける大規模な実験は、公正性を高めるためのFedMABAの例外的な性能を実証している。
関連論文リスト
- Mitigating Disparate Impact of Differential Privacy in Federated Learning through Robust Clustering [4.768272342753616]
Federated Learning(FL)は、データをローカライズする分散機械学習(ML)アプローチである。
最近の研究は、クラスタリングによるバニラFLの性能公平性に対処しようと試みているが、この手法は依然として敏感であり、エラーを起こしやすい。
本稿では,クライアントのクラスタを高度に均一な設定で効果的に識別する新しいクラスタ化DPFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:03:31Z) - FedFDP: Fairness-Aware Federated Learning with Differential Privacy [21.55903748640851]
Federated Learning(FL)は、データサイロの課題を克服するための、新しい機械学習パラダイムである。
我々はまず,FedFairと呼ばれるフェアネス対応のフェデレーション学習アルゴリズムを提案する。
次に、公正性、プライバシ保護、モデルパフォーマンスのトレードオフに対処するため、差分プライバシー保護を導入し、FedFDPアルゴリズムを形成する。
論文 参考訳(メタデータ) (2024-02-25T08:35:21Z) - Reinforcement Learning as a Catalyst for Robust and Fair Federated
Learning: Deciphering the Dynamics of Client Contributions [6.318638597489423]
Reinforcement Federated Learning (RFL)は、深い強化学習を活用して、集約中のクライアントコントリビューションを適応的に最適化する新しいフレームワークである。
堅牢性に関しては、RFLは同等の公平性を維持しつつ、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-02-08T10:22:12Z) - Anti-Matthew FL: Bridging the Performance Gap in Federated Learning to Counteract the Matthew Effect [4.716839088197377]
フェデレートラーニング(FL)は、異種および多種多様なデータセット間のモデルトレーニングを容易にする。
本研究では,クライアントレベルでのグローバルモデルに対するアンチマシューフェアネスを提案する。
提案するアンチマシューFLは,高性能なグローバルモデルを実現する上で,他の最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-09-28T10:51:12Z) - FedVal: Different good or different bad in federated learning [9.558549875692808]
フェデレート・ラーニング(FL)システムは悪意のあるアクターからの攻撃を受けやすい。
FLは、異なる人口集団の公正なパフォーマンスを保証するなど、グループの偏見に対処する上で、新たな課題を提起する。
このようなバイアスに対処するために使用される従来の方法は、FLシステムが持っていないデータへの集中的なアクセスを必要とする。
我々は、クライアントからの追加情報を必要としない堅牢性と公正性の両方に対して、新しいアプローチであるFedValを提案する。
論文 参考訳(メタデータ) (2023-06-06T22:11:13Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
我々はFedSkipと呼ばれるデータ駆動型アプローチを導入し、フェデレーション平均化を定期的にスキップし、ローカルモデルをクロスデバイスに分散することで、クライアントの最適化を改善する。
我々は、FedSkipがはるかに高い精度、より良いアグリゲーション効率、競合する通信効率を達成することを示すために、さまざまなデータセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-12-14T13:57:01Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
我々はFedVRAと呼ばれる原始二重FLアルゴリズムを提案し、このアルゴリズムはグローバルモデルの分散還元レベルとバイアスを適応的に制御することができる。
半教師付き画像分類タスクに基づく実験は,既存の手法よりもFedVRAの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T03:27:51Z) - FedFM: Anchor-based Feature Matching for Data Heterogeneity in Federated
Learning [91.74206675452888]
本稿では,各クライアントの特徴を共有カテゴリーのアンカーにマッチさせる新しいFedFM法を提案する。
効率と柔軟性を向上させるため,FedFM-Liteと呼ばれるFedFM変種を提案し,クライアントは同期時間と通信帯域幅のコストを少なくしてサーバと通信する。
論文 参考訳(メタデータ) (2022-10-14T08:11:34Z) - Fair and Consistent Federated Learning [48.19977689926562]
フェデレートラーニング(FL)は、分散データソースから学習する能力に対する関心が高まっている。
本稿では,異なるローカルクライアント間で性能整合性とアルゴリズムフェアネスを協調的に検討するFLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-19T01:56:08Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
フェデレートラーニング(FL)では、モデルトレーニングはクライアントに分散し、ローカルモデルは中央サーバによって集約される。
本稿では,各クライアントの差分プライバシ(DP)要件だけでなく,全体としてのトレーニング性能に制約された無線チャネル上でのFLトレーニング遅延を最小限に抑えることを目的とする。
論文 参考訳(メタデータ) (2021-06-20T13:51:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。