論文の概要: Learning Approximated Maximal Safe Sets via Hypernetworks for MPC-Based Local Motion Planning
- arxiv url: http://arxiv.org/abs/2410.20267v1
- Date: Sat, 26 Oct 2024 20:37:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:23.811057
- Title: Learning Approximated Maximal Safe Sets via Hypernetworks for MPC-Based Local Motion Planning
- Title(参考訳): MPCを用いた局所運動計画のためのハイパーネットによる最大安全集合の学習
- Authors: Bojan Derajić, Mohamed-Khalil Bouzidi, Sebastian Bernhard, Wolfgang Hönig,
- Abstract要約: 我々はハイパーネットのアイデアを活用し、優れた一般化特性とリアルタイム性能を同時に達成する。
我々は,モデル予測制御(MPC)ローカルプランナを安全制約として統合し,現実的な3次元シミュレーションにおける性能と関連するベースラインを比較した。
- 参考スコア(独自算出の注目度): 1.3182466374784207
- License:
- Abstract: This paper presents a novel learning-based approach for online estimation of maximal safe sets for local motion planning tasks in mobile robotics. We leverage the idea of hypernetworks to achieve good generalization properties and real-time performance simultaneously. As the source of supervision, we employ the Hamilton-Jacobi (HJ) reachability analysis, allowing us to consider general nonlinear dynamics and arbitrary constraints. We integrate our model into a model predictive control (MPC) local planner as a safety constraint and compare the performance with relevant baselines in realistic 3D simulations for different environments and robot dynamics. The results show the advantages of our approach in terms of a significantly higher success rate: 2 to 18 percent over the best baseline, while achieving real-time performance.
- Abstract(参考訳): 本稿では,移動ロボットにおける局所動作計画タスクのための最適セットのオンライン評価のための,学習に基づく新しいアプローチを提案する。
我々はハイパーネットのアイデアを活用し、優れた一般化特性とリアルタイム性能を同時に達成する。
監視の源として、ハミルトン・ヤコビ(HJ)の到達可能性解析を採用し、一般的な非線形力学と任意の制約を考えることができる。
我々は,モデル予測制御(MPC)ローカルプランナを安全制約として統合し,異なる環境における現実的な3次元シミュレーションやロボット力学における性能と関連するベースラインを比較した。
その結果、我々のアプローチの利点は、非常に高い成功率で示され、最高のベースラインを2~18%上回る一方で、リアルタイムのパフォーマンスを実現しています。
関連論文リスト
- End-to-End Predictive Planner for Autonomous Driving with Consistency Models [5.966385886363771]
軌道予測と計画は、自動運転車が動的環境において安全かつ効率的に航行するための基本的な要素である。
伝統的に、これらのコンポーネントは、しばしば別々のモジュールとして扱われ、インタラクティブな計画を実行する能力を制限する。
単一の一貫性モデルで予測と計画を統合する,統一的でデータ駆動のフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-12T00:26:01Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
私たちは世界モデルを学ぶための新しいフレームワークを紹介します。
スケーラブルで堅牢なフレームワークを提供することで、現実のアプリケーションにおいて適応的で効率的なロボットシステムを実現することができる。
論文 参考訳(メタデータ) (2025-01-17T10:39:09Z) - Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments [49.30744329170107]
本稿では,動的障害物に関する情報を最小限に抑えた最適オンライン動作計画手法を提案する。
提案手法は,モデルシミュレーションによるオンライン最適計画のためのモンテカルロ木探索 (MCTS) と障害物回避のためのVelocity Obstacles (VO) を組み合わせた。
我々は,非線形モデル予測制御(NMPC)を含む最先端のプランナーに対して,衝突速度,計算,タスク性能の向上の観点から,我々の方法論の優位性を示す。
論文 参考訳(メタデータ) (2025-01-16T16:45:08Z) - PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
PLANRLは、ロボットがいつ古典的な動き計画を使うべきか、いつポリシーを学ぶべきかを選択するためのフレームワークである。
PLANRLは2つの操作モードを切り替える: オブジェクトから離れたときに古典的なテクニックを使ってウェイポイントに到達し、オブジェクトと対話しようとするときに細かい操作制御を行う。
我々は,複数の課題のあるシミュレーション環境と実世界のタスクにまたがってアプローチを評価し,既存手法と比較して適応性,効率,一般化の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-07T19:30:08Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Constrained Policy Optimization via Bayesian World Models [79.0077602277004]
LAMBDAは、マルコフ決定プロセスを通じてモデル化された安全クリティカルタスクにおけるポリシー最適化のためのモデルに基づくアプローチである。
LAMBDA のSafety-Gymベンチマークスイートにおける技術性能について,サンプル効率と制約違反の観点から示す。
論文 参考訳(メタデータ) (2022-01-24T17:02:22Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
実データ比率を自動的にスケジュールするAutoMBPOというフレームワークを提案する。
本稿ではまず,政策訓練における実データの役割を理論的に分析し,実際のデータの比率を徐々に高めれば,より優れた性能が得られることを示唆する。
論文 参考訳(メタデータ) (2021-11-16T15:24:59Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。