Conditional GAN for Enhancing Diffusion Models in Efficient and Authentic Global Gesture Generation from Audios
- URL: http://arxiv.org/abs/2410.20359v2
- Date: Fri, 01 Nov 2024 09:33:29 GMT
- Title: Conditional GAN for Enhancing Diffusion Models in Efficient and Authentic Global Gesture Generation from Audios
- Authors: Yongkang Cheng, Mingjiang Liang, Shaoli Huang, Gaoge Han, Jifeng Ning, Wei Liu,
- Abstract summary: Methods based on VAEs are accompanied by issues of local jitter and global instability.
We introduce a conditional GAN to capture audio control signals and implicitly match the multimodal denoising distribution between the diffusion and denoising steps.
- Score: 10.57695963534794
- License:
- Abstract: Audio-driven simultaneous gesture generation is vital for human-computer communication, AI games, and film production. While previous research has shown promise, there are still limitations. Methods based on VAEs are accompanied by issues of local jitter and global instability, whereas methods based on diffusion models are hampered by low generation efficiency. This is because the denoising process of DDPM in the latter relies on the assumption that the noise added at each step is sampled from a unimodal distribution, and the noise values are small. DDIM borrows the idea from the Euler method for solving differential equations, disrupts the Markov chain process, and increases the noise step size to reduce the number of denoising steps, thereby accelerating generation. However, simply increasing the step size during the step-by-step denoising process causes the results to gradually deviate from the original data distribution, leading to a significant drop in the quality of the generated actions and the emergence of unnatural artifacts. In this paper, we break the assumptions of DDPM and achieves breakthrough progress in denoising speed and fidelity. Specifically, we introduce a conditional GAN to capture audio control signals and implicitly match the multimodal denoising distribution between the diffusion and denoising steps within the same sampling step, aiming to sample larger noise values and apply fewer denoising steps for high-speed generation.
Related papers
- Training-Free Adaptive Diffusion with Bounded Difference Approximation Strategy [44.09909260046396]
We propose AdaptiveDiffusion to reduce noise prediction steps during the denoising process.
Our method can significantly speed up the denoising process while generating identical results to the original process, achieving up to an average 25x speedup.
arXiv Detail & Related papers (2024-10-13T15:19:18Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Towards More Accurate Diffusion Model Acceleration with A Timestep
Aligner [84.97253871387028]
A diffusion model, which is formulated to produce an image using thousands of denoising steps, usually suffers from a slow inference speed.
We propose a timestep aligner that helps find a more accurate integral direction for a particular interval at the minimum cost.
Experiments show that our plug-in design can be trained efficiently and boost the inference performance of various state-of-the-art acceleration methods.
arXiv Detail & Related papers (2023-10-14T02:19:07Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
We reformulate the SED problem by taking a generative learning perspective.
Specifically, we aim to generate sound temporal boundaries from noisy proposals in a denoising diffusion process.
During training, our model learns to reverse the noising process by converting noisy latent queries to the groundtruth versions.
arXiv Detail & Related papers (2023-08-14T17:29:41Z) - SVNR: Spatially-variant Noise Removal with Denoising Diffusion [43.2405873681083]
We present a novel formulation of denoising diffusion that assumes a more realistic, spatially-variant noise model.
In experiments we demonstrate the advantages of our approach over a strong diffusion model baseline, as well as over a state-of-the-art single image denoising method.
arXiv Detail & Related papers (2023-06-28T09:32:00Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - Parallel Sampling of Diffusion Models [76.3124029406809]
Diffusion models are powerful generative models but suffer from slow sampling.
We present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel.
arXiv Detail & Related papers (2023-05-25T17:59:42Z) - Accelerating Diffusion Models via Early Stop of the Diffusion Process [114.48426684994179]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved impressive performance on various generation tasks.
In practice DDPMs often need hundreds even thousands of denoising steps to obtain a high-quality sample.
We propose a principled acceleration strategy, referred to as Early-Stopped DDPM (ES-DDPM), for DDPMs.
arXiv Detail & Related papers (2022-05-25T06:40:09Z) - Denoising Distantly Supervised Named Entity Recognition via a
Hypergeometric Probabilistic Model [26.76830553508229]
Hypergeometric Learning (HGL) is a denoising algorithm for distantly supervised named entity recognition.
HGL takes both noise distribution and instance-level confidence into consideration.
Experiments show that HGL can effectively denoise the weakly-labeled data retrieved from distant supervision.
arXiv Detail & Related papers (2021-06-17T04:01:25Z) - Knowledge Distillation in Iterative Generative Models for Improved
Sampling Speed [0.0]
Iterative generative models, such as noise conditional score networks, produce high quality samples by gradually denoising an initial noise vector.
We establish a novel connection between knowledge distillation and image generation with a technique that distills a multi-step denoising process into a single step.
Our Denoising Student generates high quality samples comparable to GANs on the CIFAR-10 and CelebA datasets, without adversarial training.
arXiv Detail & Related papers (2021-01-07T06:12:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.