論文の概要: ThunderKittens: Simple, Fast, and Adorable AI Kernels
- arxiv url: http://arxiv.org/abs/2410.20399v1
- Date: Sun, 27 Oct 2024 10:07:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:16:41.304199
- Title: ThunderKittens: Simple, Fast, and Adorable AI Kernels
- Title(参考訳): ThunderKittens: シンプルで高速で愛らしいAIカーネル
- Authors: Benjamin F. Spector, Simran Arora, Aaryan Singhal, Daniel Y. Fu, Christopher Ré,
- Abstract要約: We present ThunderKittens (TK), a framework for write performanceant AI kernels while rest to use and maintain。
我々は、さまざまなAI操作に対して、以前のカーネルと一致するか、より優れているカーネルを提供することで、TKの価値を示す。
- 参考スコア(独自算出の注目度): 43.32681787348603
- License:
- Abstract: The challenge of mapping AI architectures to GPU hardware is creating a critical bottleneck in AI progress. Despite substantial efforts, hand-written custom kernels fail to meet their theoretical performance thresholds, even on well-established operations like linear attention. The diverse hardware capabilities of GPUs might suggest that we need a wide variety of techniques to achieve high performance. However, our work explores whether a small number of key abstractions can drastically simplify the process. We present ThunderKittens (TK), a framework for writing performant AI kernels while remaining easy to use and maintain. Our abstractions map to the three levels of the GPU hierarchy: (1) at the warp-level, we provide 16x16 matrix tiles as basic data structures and PyTorch-like parallel compute operations over tiles, (2) at the thread-block level, we provide a template for overlapping asynchronous operations across parallel warps, and (3) at the grid-level, we provide support to help hide the block launch and tear-down, and memory costs. We show the value of TK by providing kernels that match or outperform prior kernels for a range of AI operations. We match CuBLAS and FlashAttention-3 on GEMM and attention inference performance and outperform the strongest baselines by $10-40\%$ on attention backwards, $8\times$ on state space models, and $14\times$ on linear attention.
- Abstract(参考訳): AIアーキテクチャをGPUハードウェアにマッピングするという課題は、AIの進歩において重要なボトルネックを生み出している。
かなりの努力にもかかわらず、手書きのカスタムカーネルは、線形注意のような十分に確立された操作であっても、理論的なパフォーマンスのしきい値を満たすことができない。
GPUの多様なハードウェア能力は、ハイパフォーマンスを実現するためにさまざまな技術が必要であることを示唆しているかもしれない。
しかし、我々の研究は、少数の重要な抽象化がプロセスを大幅に単純化できるかどうかを調査している。
We present ThunderKittens (TK), a framework for write performanceant AI kernels while rest to use and maintain。
我々は,(1)ワープレベルでは16x16マトリックスタイルを基本データ構造として提供し,(2)スレッドブロックレベルでは並列処理を並列処理し,(3)グリッドレベルではブロックの起動と分解,メモリコストを隠蔽するためのサポートを提供する。
我々は、さまざまなAI操作に対して、以前のカーネルと一致するか、より優れているカーネルを提供することで、TKの価値を示す。
GEMM では CuBLAS と FlashAttention-3 が一致し、アテンション推論性能が向上し、アテンションバックワードでは 10-40\% 、ステートスペースモデルでは 8\times が、リニアアテンションでは 14\times が最強のベースラインを上回ります。
関連論文リスト
- Tree Attention: Topology-aware Decoding for Long-Context Attention on GPU clusters [10.403248386029407]
自己アテンションは、シーケンス長の複雑さのため、重要な計算ボトルネックである。
本研究では、勾配が自己アテンションブロックを計算するスカラーエネルギー関数を導出する。
我々の定式化により,木伐採により,配列軸を横断する還元を効率的に並列に計算できることが判明した。
論文 参考訳(メタデータ) (2024-08-07T21:16:55Z) - Accelerating Machine Learning Primitives on Commodity Hardware [0.0]
本稿では,Deep Neural Networks (DNN) における一般行列乗算 (GEMM) に基づく畳み込みよりも効率的な代替手段として,スライディングウィンドウ畳み込み手法について広範な研究を行う。
この結果から,Sliding Window 計算カーネルは CPU 上でも専用ハードウェアアクセラレータ上でも GEMM ベースの畳み込みよりも優れていることが示唆された。
これにより、特別なハードウェアを必要とせずに、低消費電力および低メモリデバイスにAIが広く採用される可能性がある。
論文 参考訳(メタデータ) (2023-10-08T16:26:18Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - Batch-efficient EigenDecomposition for Small and Medium Matrices [65.67315418971688]
EigenDecomposition (ED)は多くのコンピュータビジョンアルゴリズムとアプリケーションの中心にある。
本稿では,コンピュータビジョンの応用シナリオに特化したQRベースのED手法を提案する。
論文 参考訳(メタデータ) (2022-07-09T09:14:12Z) - VersaGNN: a Versatile accelerator for Graph neural networks [81.1667080640009]
我々は,超効率的なサイストリックアレイベースの多用途ハードウェアアクセラレータである textitVersaGNN を提案する。
textitVersaGNNは平均3712$times$ speedup with 1301.25$times$ energy reduction on CPU、35.4$times$ speedup with 17.66$times$ energy reduction on GPUを達成している。
論文 参考訳(メタデータ) (2021-05-04T04:10:48Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
ヘテロジニアスCPU+GPUアーキテクチャの深層学習のためのトレーニングアルゴリズムについて検討する。
私たちの2倍の目標 -- 収束率と資源利用を同時に最大化する -- は、この問題を難しくします。
これらのアルゴリズムの実装は,複数の実データセットよりも高速な収束と資源利用の両立を実現していることを示す。
論文 参考訳(メタデータ) (2020-04-19T05:21:20Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
この研究は、人気のあるDual Block-Coordinate Ascent原則に基づく新しいMAP-solverを導入している。
驚いたことに、性能の低い解法に小さな変更を加えることで、既存の解法を大きなマージンで大幅に上回る新しい解法MPLP++を導出します。
論文 参考訳(メタデータ) (2020-04-16T16:20:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。