論文の概要: Self-correction is Not An Innate Capability in Large Language Models: A Case Study of Moral Self-correction
- arxiv url: http://arxiv.org/abs/2410.20513v6
- Date: Sun, 26 Oct 2025 00:20:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 17:41:21.317585
- Title: Self-correction is Not An Innate Capability in Large Language Models: A Case Study of Moral Self-correction
- Title(参考訳): 大規模言語モデルにおける自己補正は自然能力ではない:道徳的自己補正を事例として
- Authors: Guangliang Liu, Zimo Qi, Xitong Zhang, Lu Cheng, Kristen Marie Johnson,
- Abstract要約: 道徳的自己補正はLLMの本質的な能力か?」という根本的な疑問に対処することで道徳的自己補正の基盤となるメカニズムを考察する。
道徳的自己補正は、道徳的に敏感でもなく、自己補正プロセス中に外部からのフィードバックを効果的に取り入れることができないため、LLMの本質的な能力ではないことを示す。
- 参考スコア(独自算出の注目度): 13.268938380591765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although there has been growing interest in the self-correction capability of Large Language Models (LLMs), there are varying conclusions about its effectiveness. Prior research has largely concentrated on intrinsic self-correction, extrinsic self-correction, particularly the interplay between internal knowledge and external feedback, remains underexplored. In this paper, we aim to comprehensively investigate the underlying mechanism of moral self-correction by addressing a fundamental question: is moral self-correction an innate capability of LLMs? Specifically, we conduct: (1) a behavioral analysis of LLMs' moral sensitivity based on a self-distinguishing task; and (2) a mechanistic analysis of the hidden states to examine how key components of self-correction, such as Chain-of-Thought (CoT) and external feedback, interact to facilitate moral self-correction. Drawing on empirical evidence from both behavioral and mechanistic analyses, we demonstrate that moral self-correction is not an inherent capability of LLMs, as they are neither morally sensitive nor able to effectively incorporate external feedback during the self-correction process.
- Abstract(参考訳): LLM(Large Language Models)の自己補正能力への関心は高まっているが、その有効性については様々な結論がある。
従来の研究では、内在的な自己補正、外在的な自己補正、特に内的知識と外部からのフィードバックとの相互作用に主に焦点が当てられていた。
本稿では、道徳的自己補正はLLMの本質的な能力なのか、という根本的な疑問に対処することで、道徳的自己補正の基盤となるメカニズムを包括的に研究することを目的とする。
具体的には、(1)自己識別タスクに基づくLCMの道徳的感受性の行動分析、(2)自己補正の鍵となる要素であるCoT(Chain-of-Thought)や外部からのフィードバックが、道徳的自己補正を促進するためにどのように作用するかを調べるための隠れ状態の力学解析を行う。
行動的・機械的分析の両方から経験的証拠を抽出し、道徳的自己補正がLLMの本質的な能力ではなく、道徳的感受性がなく、自己補正プロセス中に外部からのフィードバックを効果的に組み込むことができないことを実証した。
関連論文リスト
- Discourse Heuristics For Paradoxically Moral Self-Correction [6.360181137608509]
道徳的自己補正は、大規模言語モデルの出力と人間の道徳的価値を整合させるための有望なアプローチとして現れてきた。
道徳的自己補正はショートカットを反映した談話構成に依存していることを示す。
本稿では,キュレートされたデータセットの一般化を利用して,道徳的自己補正を改善する手法を提案する。
論文 参考訳(メタデータ) (2025-07-01T17:36:41Z) - Factual Self-Awareness in Language Models: Representation, Robustness, and Scaling [56.26834106704781]
大規模言語モデル(LLM)のユビキタス展開における主要な関心事の一つは、生成されたコンテンツの事実的誤りである。
我々は, LLMの内部コンパスの存在を裏付ける証拠を提供し, 生成時の事実的リコールの正しさを規定する。
モデルサイズにわたる実験のスケールとトレーニングのダイナミクスは、トレーニング中に自己認識が急速に出現し、中間層でピークとなることを浮き彫りにしている。
論文 参考訳(メタデータ) (2025-05-27T16:24:02Z) - Line of Duty: Evaluating LLM Self-Knowledge via Consistency in Feasibility Boundaries [0.0]
本研究は,新たな手法を用いて,異なるタイプのLDM自己知識に関する本質的な洞察を得ることを目的とする。
GPT-4oやMistral Largeのようなフロンティアモデルでさえ、その80%以上の能力を確信していないことが分かりました。
論文 参考訳(メタデータ) (2025-03-14T10:07:07Z) - Understanding the Dark Side of LLMs' Intrinsic Self-Correction [55.51468462722138]
LLMの応答を改善するために,本質的な自己補正法が提案された。
近年の研究では、LLMの内在的な自己補正は、フィードバックのプロンプトとして、オラクルラベルなしで失敗することが示されている。
内在的な自己補正は、中途半端な回答と最終回答の両方を LLM が揺らぎ、単純な事実的質問に対する素早い偏見をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-12-19T15:39:31Z) - Critic-CoT: Boosting the reasoning abilities of large language model via Chain-of-thoughts Critic [48.94340387130627]
Critic-CoTは、LLMをSystem-2のような批判能力にプッシュするフレームワークである。
人間のアノテーションを使わずにCoT推論パラダイムと遠隔スーパービジョンデータの自動構築
GSM8KとMATHの実験は、我々の強化されたモデルがタスク解決性能を大幅に向上させることを示した。
論文 参考訳(メタデータ) (2024-08-29T08:02:09Z) - Intrinsic Self-correction for Enhanced Morality: An Analysis of Internal Mechanisms and the Superficial Hypothesis [35.734425912914176]
大規模言語モデル(LLM)は、ステレオタイプ、識別、毒性を永続するコンテンツを生成できる。
最近提案された道徳的自己補正は、LLMの応答における有害な内容を減らすための計算学的に効率的な方法である。
自己補正は、LLMが隠れた状態に保存されている不道徳性を本当に減らすのではなく、より道徳的に正しいアウトプットのショートカットを見つけるのに役立つと我々は主張する。
論文 参考訳(メタデータ) (2024-07-21T22:50:11Z) - Large Language Models have Intrinsic Self-Correction Ability [16.831123666582755]
大規模言語モデルは、性能劣化を引き起こす幻覚に悩まされる。
LLMのパフォーマンスを改善するための有望な解決策の1つは、LLMに世代ごとの回答の修正を求めることである。
内在的な自己補正は、外部知識を活用できないため、有望な方向と考えられる。
論文 参考訳(メタデータ) (2024-06-21T22:29:40Z) - On the Intrinsic Self-Correction Capability of LLMs: Uncertainty and Latent Concept [36.27550578296276]
大規模言語モデル(LLM)は、自己補正(self-correction)と呼ばれる機能によって、その応答を改善することができる。
内在的な自己補正は、様々な応用で明らかであるが、それが有効である理由や理由は不明である。
内在的な自己補正は徐々に改善され、収束状態に近づくことができることを示す。
論文 参考訳(メタデータ) (2024-06-04T14:55:43Z) - A Theoretical Understanding of Self-Correction through In-context Alignment [51.622068973630796]
大規模言語モデル(LLM)は自己補正によって純粋に能力を向上させることができる。
LLMが比較的正確な自己評価を報酬として与える場合、文脈内応答を補充できることを示す。
これらの知見に触発されて,LLMジェイルブレイクに対する防御などの自己補正の応用についても解説した。
論文 参考訳(メタデータ) (2024-05-28T22:33:02Z) - Small Language Models Need Strong Verifiers to Self-Correct Reasoning [69.94251699982388]
大規模言語モデル(LLM)の推論性能を高めるための有望なソリューションとして自己補正が登場した。
この研究は、小さい(=13B)言語モデル(LM)が、より強いLMから最小の入力で推論タスクを自己補正できるかどうかを考察する。
論文 参考訳(メタデータ) (2024-04-26T03:41:28Z) - Distilling Reasoning Ability from Large Language Models with Adaptive Thinking [54.047761094420174]
思考の微調整(cot-finetuning)の連鎖は、小さな言語モデル(SLM)を特定のタスクに対するパフォーマンス向上の推論能力で実現することを目的としている。
既存のコトファインタニング法の多くは事前に考えられたメカニズムを採用しており、SLMは答えを出す前に理性を生成することができる。
このメカニズムにより、SLMは複雑な質問を分析して考えることができるが、答えの正しさは論理的に小さな誤りに非常に敏感になる。
理性よりも先に回答を生成するための頑健な後思考機構を提案する。
論文 参考訳(メタデータ) (2024-04-14T07:19:27Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は意思決定タスクを自動化するために使用される。
本稿では,LPMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを評価する。
さまざまな因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成します。
これらのベンチマークにより、LLMが事実を記憶したり、他のショートカットを見つけたりすることで、変化を正確に予測する能力を切り離すことができます。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models [23.42725642076256]
大規模言語モデル(LLM)は、自己訂正能力への関心が高まっている。
本稿では,LLMの内在的自己補正に関する包括的研究について述べる。
We developed a "If-or-Else" prompting framework, designed to guide LLMs in evaluation of their "confidence"。
論文 参考訳(メタデータ) (2024-02-19T21:38:02Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
大規模言語モデル(LLM)は、たとえ関連する知識を持っていたとしても、事実的不正確さに悩まされることが多い。
我々は,LLMの自己評価能力を活用し,現実性に向けてモデルを操る訓練信号を提供する。
提案手法は,Llamaファミリーモデルに対して,3つの重要な知識集約タスクにおいて,現実的精度を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-02-14T15:52:42Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
大規模言語モデルはしばしば「ハロシン化」の課題に直面している
本研究では,不確実性に応答してモデルが出力を拡張あるいは拒否することを可能にする,不確実性を考慮したコンテキスト内学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T12:06:53Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
LLM(Large Language Models)は、非並列テキスト生成機能を備えた画期的な技術として登場した。
生成したコンテンツの正確性と適切性に関する懸念が続いている。
現代の方法論である自己補正がこれらの問題に対する対策として提案されている。
論文 参考訳(メタデータ) (2023-10-03T04:56:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。