Collaborative Knowledge Fusion: A Novel Approach for Multi-task Recommender Systems via LLMs
- URL: http://arxiv.org/abs/2410.20642v1
- Date: Mon, 28 Oct 2024 00:38:06 GMT
- Title: Collaborative Knowledge Fusion: A Novel Approach for Multi-task Recommender Systems via LLMs
- Authors: Chuang Zhao, Xing Su, Ming He, Hongke Zhao, Jianping Fan, Xiaomeng Li,
- Abstract summary: We introduce a novel framework known as CKF to boost multi-task recommendations via personalized collaborative knowledge fusion.
To investigate the intrinsic relationship among diverse recommendation tasks, we develop Multi-Lora, a new parameter-efficient approach for multi-task optimization.
- Score: 18.064625844702206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Owing to the impressive general intelligence of large language models (LLMs), there has been a growing trend to integrate them into recommender systems to gain a more profound insight into human interests and intentions. Existing LLMs-based recommender systems primarily leverage item attributes and user interaction histories in textual format, improving the single task like rating prediction or explainable recommendation. Nevertheless, these approaches overlook the crucial contribution of traditional collaborative signals in discerning users' profound intentions and disregard the interrelatedness among tasks. To address these limitations, we introduce a novel framework known as CKF, specifically developed to boost multi-task recommendations via personalized collaborative knowledge fusion into LLMs. Specifically, our method synergizes traditional collaborative filtering models to produce collaborative embeddings, subsequently employing the meta-network to construct personalized mapping bridges tailored for each user. Upon mapped, the embeddings are incorporated into meticulously designed prompt templates and then fed into an advanced LLM to represent user interests. To investigate the intrinsic relationship among diverse recommendation tasks, we develop Multi-Lora, a new parameter-efficient approach for multi-task optimization, adept at distinctly segregating task-shared and task-specific information. This method forges a connection between LLMs and recommendation scenarios, while simultaneously enriching the supervisory signal through mutual knowledge transfer among various tasks. Extensive experiments and in-depth robustness analyses across four common recommendation tasks on four large public data sets substantiate the effectiveness and superiority of our framework.
Related papers
- Thought-Augmented Planning for LLM-Powered Interactive Recommender Agent [56.61028117645315]
We propose a novel thought-augmented interactive recommender agent system (TAIRA) that addresses complex user intents through distilled thought patterns.<n>Specifically, TAIRA is designed as an LLM-powered multi-agent system featuring a manager agent that orchestrates recommendation tasks by decomposing user needs and planning subtasks.<n>Through comprehensive experiments conducted across multiple datasets, TAIRA exhibits significantly enhanced performance compared to existing methods.
arXiv Detail & Related papers (2025-06-30T03:15:50Z) - Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration [63.90193684394165]
We introduce multi-agent cross-task experiential learning (MAEL), a novel framework that endows LLM-driven agents with explicit cross-task learning and experience accumulation.<n>During the experiential learning phase, we quantify the quality for each step in the task-solving workflow and store the resulting rewards.<n>During inference, agents retrieve high-reward, task-relevant experiences as few-shot examples to enhance the effectiveness of each reasoning step.
arXiv Detail & Related papers (2025-05-29T07:24:37Z) - What LLMs Miss in Recommendations: Bridging the Gap with Retrieval-Augmented Collaborative Signals [4.297070083645049]
User-item interactions contain rich collaborative signals that form the backbone of many successful recommender systems.<n>It remains unclear whether large language models (LLMs) can effectively reason over this type of collaborative information.<n>We introduce a simple retrieval-augmented generation (RAG) method that enhances LLMs by grounding their predictions in structured interaction data.
arXiv Detail & Related papers (2025-05-27T05:18:57Z) - DeepRec: Towards a Deep Dive Into the Item Space with Large Language Model Based Recommendation [83.21140655248624]
Large language models (LLMs) have been introduced into recommender systems (RSs)<n>We propose DeepRec, a novel LLM-based RS that enables autonomous multi-turn interactions between LLMs and TRMs for deep exploration of the item space.<n> Experiments on public datasets demonstrate that DeepRec significantly outperforms both traditional and LLM-based baselines.
arXiv Detail & Related papers (2025-05-22T15:49:38Z) - HistLLM: A Unified Framework for LLM-Based Multimodal Recommendation with User History Encoding and Compression [33.34435467588446]
HistLLM is an innovative framework that integrates textual and visual features through a User History.
Module (UHEM), compressing user history interactions into a single token representation.
Extensive experiments demonstrate the effectiveness and efficiency of our proposed mechanism.
arXiv Detail & Related papers (2025-04-14T12:01:11Z) - Enhancing LLM-based Recommendation through Semantic-Aligned Collaborative Knowledge [25.757451106327167]
SeLLa-Rec focuses on achieving alignment between the semantic spaces of Collabs. and LLMs.
This alignment fosters effective knowledge fusion, mitigating the influence of discriminative noise.
Experiments conducted on two public benchmark datasets demonstrate that SeLLa-Rec achieves state-of-the-art performance.
arXiv Detail & Related papers (2025-04-14T11:15:30Z) - Enhanced Recommendation Combining Collaborative Filtering and Large Language Models [0.0]
Large Language Models (LLMs) provide a new breakthrough for recommendation systems.
This paper proposes an enhanced recommendation method that combines collaborative filtering and LLMs.
The results show that the hybrid model based on collaborative filtering and LLMs significantly improves precision, recall, and user satisfaction.
arXiv Detail & Related papers (2024-12-25T00:23:53Z) - Molar: Multimodal LLMs with Collaborative Filtering Alignment for Enhanced Sequential Recommendation [4.518104756199573]
Molar is a sequential recommendation framework that integrates multiple content modalities with ID information to capture collaborative signals effectively.
By seamlessly combining multimodal content with collaborative filtering insights, Molar captures both user interests and contextual semantics, leading to superior recommendation accuracy.
arXiv Detail & Related papers (2024-12-24T05:23:13Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
We train large language models (LLMs) that can ''interact to align''
We develop a multi-turn preference dataset containing 3K+ multi-turn conversations in tree structures.
For evaluation, we establish the ALOE benchmark, consisting of 100 carefully selected examples and well-designed metrics to measure the customized alignment performance during conversations.
arXiv Detail & Related papers (2024-10-04T17:48:29Z) - Laser: Parameter-Efficient LLM Bi-Tuning for Sequential Recommendation with Collaborative Information [76.62949982303532]
We propose a parameter-efficient Large Language Model Bi-Tuning framework for sequential recommendation with collaborative information (Laser)
In our Laser, the prefix is utilized to incorporate user-item collaborative information and adapt the LLM to the recommendation task, while the suffix converts the output embeddings of the LLM from the language space to the recommendation space for the follow-up item recommendation.
M-Former is a lightweight MoE-based querying transformer that uses a set of query experts to integrate diverse user-specific collaborative information encoded by frozen ID-based sequential recommender systems.
arXiv Detail & Related papers (2024-09-03T04:55:03Z) - Harnessing Multimodal Large Language Models for Multimodal Sequential Recommendation [21.281471662696372]
We propose the Multimodal Large Language Model-enhanced Multimodaln Sequential Recommendation (MLLM-MSR) model.
To capture the dynamic user preference, we design a two-stage user preference summarization method.
We then employ a recurrent user preference summarization generation paradigm to capture the dynamic changes in user preferences.
arXiv Detail & Related papers (2024-08-19T04:44:32Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.
We propose a novel plug-and-play alignment framework for LLMs and collaborative models.
Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Large Language Models (LLMs) pretrained on massive text corpus presents a promising avenue for enhancing recommender systems.
We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
arXiv Detail & Related papers (2024-05-07T04:00:30Z) - CoRAL: Collaborative Retrieval-Augmented Large Language Models Improve
Long-tail Recommendation [34.29410946387975]
We introduce collaborative retrieval-augmented LLMs, CoRAL, which directly incorporate collaborative evidence into prompts.
LLMs can analyze shared and distinct preferences among users, and summarize the patterns indicating which types of users would be attracted by certain items.
Our experimental results show that CoRAL can significantly improve LLMs' reasoning abilities on specific recommendation tasks.
arXiv Detail & Related papers (2024-03-11T05:49:34Z) - CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation [60.2700801392527]
We introduce CoLLM, an innovative LLMRec methodology that seamlessly incorporates collaborative information into LLMs for recommendation.
CoLLM captures collaborative information through an external traditional model and maps it to the input token embedding space of LLM.
Extensive experiments validate that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.
arXiv Detail & Related papers (2023-10-30T12:25:00Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.