Enhanced Recommendation Combining Collaborative Filtering and Large Language Models
- URL: http://arxiv.org/abs/2412.18713v1
- Date: Wed, 25 Dec 2024 00:23:53 GMT
- Title: Enhanced Recommendation Combining Collaborative Filtering and Large Language Models
- Authors: Xueting Lin, Zhan Cheng, Longfei Yun, Qingyi Lu, Yuanshuai Luo,
- Abstract summary: Large Language Models (LLMs) provide a new breakthrough for recommendation systems.
This paper proposes an enhanced recommendation method that combines collaborative filtering and LLMs.
The results show that the hybrid model based on collaborative filtering and LLMs significantly improves precision, recall, and user satisfaction.
- Score: 0.0
- License:
- Abstract: With the advent of the information explosion era, the importance of recommendation systems in various applications is increasingly significant. Traditional collaborative filtering algorithms are widely used due to their effectiveness in capturing user behavior patterns, but they encounter limitations when dealing with cold start problems and data sparsity. Large Language Models (LLMs), with their strong natural language understanding and generation capabilities, provide a new breakthrough for recommendation systems. This study proposes an enhanced recommendation method that combines collaborative filtering and LLMs, aiming to leverage collaborative filtering's advantage in modeling user preferences while enhancing the understanding of textual information about users and items through LLMs to improve recommendation accuracy and diversity. This paper first introduces the fundamental theories of collaborative filtering and LLMs, then designs a recommendation system architecture that integrates both, and validates the system's effectiveness through experiments. The results show that the hybrid model based on collaborative filtering and LLMs significantly improves precision, recall, and user satisfaction, demonstrating its potential in complex recommendation scenarios.
Related papers
- Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment [69.11529841118671]
We propose a new Deliberative Recommendation task, which incorporates explicit reasoning about user preferences as an additional alignment goal.
We then introduce the Reasoning-powered Recommender framework for deliberative user preference alignment.
arXiv Detail & Related papers (2025-02-04T07:17:54Z) - The Application of Large Language Models in Recommendation Systems [0.0]
Large Language Models are powerful tools that enable recommendation frameworks to tap into unstructured data sources.
This work discusses applications of LLMs in recommendation systems, especially in electronic commerce, social media platforms, streaming services, and educational technologies.
arXiv Detail & Related papers (2025-01-04T04:02:23Z) - RecLM: Recommendation Instruction Tuning [17.780484832381994]
We propose a model-agnostic recommendation instruction-tuning paradigm that seamlessly integrates large language models with collaborative filtering.
Our proposed $underlineRec$ommendation enhances the capture of user preference diversity through a carefully designed reinforcement learning reward function.
arXiv Detail & Related papers (2024-12-26T17:51:54Z) - Optimization and Scalability of Collaborative Filtering Algorithms in Large Language Models [0.3495246564946556]
Collaborative filtering algorithms are core to many recommendation systems.
Traditional collaborative filtering approaches face numerous challenges when integrated into large-scale LLM-based systems.
This paper investigates the optimization and scalability of collaborative filtering algorithms in large language models.
arXiv Detail & Related papers (2024-12-25T00:26:51Z) - Molar: Multimodal LLMs with Collaborative Filtering Alignment for Enhanced Sequential Recommendation [4.518104756199573]
Molar is a sequential recommendation framework that integrates multiple content modalities with ID information to capture collaborative signals effectively.
By seamlessly combining multimodal content with collaborative filtering insights, Molar captures both user interests and contextual semantics, leading to superior recommendation accuracy.
arXiv Detail & Related papers (2024-12-24T05:23:13Z) - Laser: Parameter-Efficient LLM Bi-Tuning for Sequential Recommendation with Collaborative Information [76.62949982303532]
We propose a parameter-efficient Large Language Model Bi-Tuning framework for sequential recommendation with collaborative information (Laser)
In our Laser, the prefix is utilized to incorporate user-item collaborative information and adapt the LLM to the recommendation task, while the suffix converts the output embeddings of the LLM from the language space to the recommendation space for the follow-up item recommendation.
M-Former is a lightweight MoE-based querying transformer that uses a set of query experts to integrate diverse user-specific collaborative information encoded by frozen ID-based sequential recommender systems.
arXiv Detail & Related papers (2024-09-03T04:55:03Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation [60.2700801392527]
We introduce CoLLM, an innovative LLMRec methodology that seamlessly incorporates collaborative information into LLMs for recommendation.
CoLLM captures collaborative information through an external traditional model and maps it to the input token embedding space of LLM.
Extensive experiments validate that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.
arXiv Detail & Related papers (2023-10-30T12:25:00Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Broad Recommender System: An Efficient Nonlinear Collaborative Filtering
Approach [56.12815715932561]
We propose a new broad recommender system called Broad Collaborative Filtering (BroadCF)
Instead of Deep Neural Networks (DNNs), Broad Learning System (BLS) is used as a mapping function to learn the complex nonlinear relationships between users and items.
Extensive experiments conducted on seven benchmark datasets have confirmed the effectiveness of the proposed BroadCF algorithm.
arXiv Detail & Related papers (2022-04-20T01:25:08Z) - A Hybrid Recommender System for Recommending Smartphones to Prospective
Customers [0.7310043452300736]
Hybrid recommender systems combine multiple recommendation strategies in different ways to benefit from their complementary advantages.
Some hybrid recommender systems have combined collaborative filtering and content-based approaches to build systems that are more robust.
We propose a hybrid recommender system, which combines Alternative Least Squares (ALS) based collaborative filtering with deep learning to enhance recommendation performance.
arXiv Detail & Related papers (2021-05-26T23:10:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.