BLAPose: Enhancing 3D Human Pose Estimation with Bone Length Adjustment
- URL: http://arxiv.org/abs/2410.20731v2
- Date: Tue, 29 Oct 2024 04:25:55 GMT
- Title: BLAPose: Enhancing 3D Human Pose Estimation with Bone Length Adjustment
- Authors: Chih-Hsiang Hsu, Jyh-Shing Roger Jang,
- Abstract summary: This work introduces a recurrent neural network architecture designed to capture holistic information across entire video sequences.
We propose a novel augmentation strategy using synthetic bone lengths that adhere to physical constraints.
We fine-tune human pose estimation models using inferred bone lengths, observing notable improvements.
- Score: 4.181969992118842
- License:
- Abstract: Current approaches in 3D human pose estimation primarily focus on regressing 3D joint locations, often neglecting critical physical constraints such as bone length consistency and body symmetry. This work introduces a recurrent neural network architecture designed to capture holistic information across entire video sequences, enabling accurate prediction of bone lengths. To enhance training effectiveness, we propose a novel augmentation strategy using synthetic bone lengths that adhere to physical constraints. Moreover, we present a bone length adjustment method that preserves bone orientations while substituting bone lengths with predicted values. Our results demonstrate that existing 3D human pose estimation models can be significantly enhanced through this adjustment process. Furthermore, we fine-tune human pose estimation models using inferred bone lengths, observing notable improvements. Our bone length prediction model surpasses the previous best results, and our adjustment and fine-tuning method enhance performance across several metrics on the Human3.6M dataset.
Related papers
- ARTS: Semi-Analytical Regressor using Disentangled Skeletal Representations for Human Mesh Recovery from Videos [18.685856290041283]
ARTS surpasses existing state-of-the-art video-based methods in both per-frame accuracy and temporal consistency on popular benchmarks.
A skeleton estimation and disentanglement module is proposed to estimate the 3D skeletons from a video.
The regressor consists of three modules: Temporal Inverse Kinematics (TIK), Bone-guided Shape Fitting (BSF), and Motion-Centric Refinement (MCR)
arXiv Detail & Related papers (2024-10-21T02:06:43Z) - Occluded Human Pose Estimation based on Limb Joint Augmentation [14.36131862057872]
We propose an occluded human pose estimation framework based on limb joint augmentation to enhance the generalization ability of the pose estimation model on the occluded human bodies.
To further enhance the localization ability of the model, this paper constructs a dynamic structure loss function based on limb graphs to explore the distribution of occluded joints.
arXiv Detail & Related papers (2024-10-13T15:48:24Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
We propose a new modeling method for human pose deformations and design an accompanying diffusion-based motion prior.
Inspired by the field of non-rigid structure-from-motion, we divide the task of reconstructing 3D human skeletons in motion into the estimation of a 3D reference skeleton.
A mixed spatial-temporal NRSfMformer is used to simultaneously estimate the 3D reference skeleton and the skeleton deformation of each frame from 2D observations sequence.
arXiv Detail & Related papers (2023-08-18T16:41:57Z) - Using machine learning on new feature sets extracted from 3D models of
broken animal bones to classify fragments according to break agent [53.796331564067835]
We present a new approach to fracture pattern analysis aimed at distinguishing bone fragments resulting from hominin bone breakage and those produced by carnivores.
This new method uses 3D models of fragmentary bone to extract a much richer dataset that is more transparent and replicable than feature sets previously used in fracture pattern analysis.
Supervised machine learning algorithms are properly used to classify bone fragments according to agent of breakage with average mean accuracy of 77% across tests.
arXiv Detail & Related papers (2022-05-20T20:16:21Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
We propose a novel neural implicit representation for the human body.
It is fully differentiable and optimizable with disentangled shape and pose latent spaces.
Our model can be trained and fine-tuned directly on non-watertight raw data with well-designed losses.
arXiv Detail & Related papers (2021-11-30T04:10:57Z) - Motion Projection Consistency Based 3D Human Pose Estimation with
Virtual Bones from Monocular Videos [16.808244226857745]
The concept of virtual bones is proposed to solve the problem of cumulative error in 3D human pose estimation.
The proposed network in this paper predicts real bones and virtual bones, simultaneously.
The consistency between the 2D projected position displacement predicted by the network and the captured real 2D displacement by the camera is proposed as a new projection consistency loss for the learning of 3D human pose.
arXiv Detail & Related papers (2021-06-28T13:37:57Z) - Revisiting Skeleton-based Action Recognition [107.08112310075114]
PoseC3D is a new approach to skeleton-based action recognition, which relies on a 3D heatmap instead stack a graph sequence as the base representation of human skeletons.
On four challenging datasets, PoseC3D consistently obtains superior performance, when used alone on skeletons and in combination with the RGB modality.
arXiv Detail & Related papers (2021-04-28T06:32:17Z) - Cascaded deep monocular 3D human pose estimation with evolutionary
training data [76.3478675752847]
Deep representation learning has achieved remarkable accuracy for monocular 3D human pose estimation.
This paper proposes a novel data augmentation method that is scalable for massive amount of training data.
Our method synthesizes unseen 3D human skeletons based on a hierarchical human representation and synthesizings inspired by prior knowledge.
arXiv Detail & Related papers (2020-06-14T03:09:52Z) - Anatomy-aware 3D Human Pose Estimation with Bone-based Pose
Decomposition [92.99291528676021]
Instead of directly regressing the 3D joint locations, we decompose the task into bone direction prediction and bone length prediction.
Our motivation is the fact that the bone lengths of a human skeleton remain consistent across time.
Our full model outperforms the previous best results on Human3.6M and MPI-INF-3DHP datasets.
arXiv Detail & Related papers (2020-02-24T15:49:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.