論文の概要: CardiacNet: Learning to Reconstruct Abnormalities for Cardiac Disease Assessment from Echocardiogram Videos
- arxiv url: http://arxiv.org/abs/2410.20769v1
- Date: Mon, 28 Oct 2024 06:11:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:21:21.720649
- Title: CardiacNet: Learning to Reconstruct Abnormalities for Cardiac Disease Assessment from Echocardiogram Videos
- Title(参考訳): CardiacNet: 心エコー画像による心疾患診断における異常の再構築
- Authors: Jiewen Yang, Yiqun Lin, Bin Pu, Jiarong Guo, Xiaowei Xu, Xiaomeng Li,
- Abstract要約: 局所心構造と運動異常のより優れた表現を学習するために,CardiacNet という新しい再構築手法を提案する。
CardiacNet には Consistency deformation Codebook (CDC) と Consistency Deformed-Discriminator (CDD) が付属している。
実験では、3つの心臓疾患評価タスクで最先端の結果が得られます。
- 参考スコア(独自算出の注目度): 10.06966396329022
- License:
- Abstract: Echocardiogram video plays a crucial role in analysing cardiac function and diagnosing cardiac diseases. Current deep neural network methods primarily aim to enhance diagnosis accuracy by incorporating prior knowledge, such as segmenting cardiac structures or lesions annotated by human experts. However, diagnosing the inconsistent behaviours of the heart, which exist across both spatial and temporal dimensions, remains extremely challenging. For instance, the analysis of cardiac motion acquires both spatial and temporal information from the heartbeat cycle. To address this issue, we propose a novel reconstruction-based approach named CardiacNet to learn a better representation of local cardiac structures and motion abnormalities through echocardiogram videos. CardiacNet is accompanied by the Consistency Deformation Codebook (CDC) and the Consistency Deformed-Discriminator (CDD) to learn the commonalities across abnormal and normal samples by incorporating cardiac prior knowledge. In addition, we propose benchmark datasets named CardiacNet-PAH and CardiacNet-ASD to evaluate the effectiveness of cardiac disease assessment. In experiments, our CardiacNet can achieve state-of-the-art results in three different cardiac disease assessment tasks on public datasets CAMUS, EchoNet, and our datasets. The code and dataset are available at: https://github.com/xmed-lab/CardiacNet.
- Abstract(参考訳): 心エコービデオは心機能解析や心疾患の診断において重要な役割を担っている。
現在のディープニューラルネットワーク法は主に、人間の専門家によって注釈された心臓構造や病変の分節のような事前の知識を取り入れることで、診断精度を高めることを目的としている。
しかし、空間次元と時間次元の両方に存在する心臓の不整合性行動の診断は、依然として極めて困難である。
例えば、心臓の動きの分析は、心拍周期から空間的情報と時間的情報の両方を取得する。
そこで本研究では,心エコービデオを用いて,局所心構造と運動異常のより良い表現を学習するための,心電図に基づく新しいアプローチを提案する。
CardiacNet には Consistency deformation Codebook (CDC) と Consistency Deformed-Discriminator (CDD) が付属している。
さらに,心疾患評価の有効性を評価するため,CardiacNet-PAHとCardiacNet-ASDというベンチマークデータセットを提案する。
実験では、CAMUS、EchoNet、および我々のデータセット上の3つの異なる心疾患評価タスクにおいて、私たちのCardiacNetは最先端の結果を得ることができる。
コードとデータセットは、https://github.com/xmed-lab/CardiacNet.comで公開されている。
関連論文リスト
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - CNN Based Detection of Cardiovascular Diseases from ECG Images [0.0]
このモデルはInceptionV3アーキテクチャを使って構築され、転送学習によって最適化された。
開発されたモデルでは、MIや他の心血管疾患を93.27%の精度で検出することに成功した。
論文 参考訳(メタデータ) (2024-08-29T11:26:07Z) - Cardiac Copilot: Automatic Probe Guidance for Echocardiography with World Model [66.35766658717205]
心臓の複雑な構造と重要な手術上の課題のため、経験豊富なソノグラフィーが不足している。
本稿では,リアルタイムなプローブ移動誘導が可能なCardiac Copilotシステムを提案する。
中心となるイノベーションは、心臓の空間構造を表現するためのデータ駆動の世界モデル、Cardiac Dreamerの提案である。
実世界の超音波データとそれに対応するプローブの動きを,3人のソノグラフィーによる151Kサンプル対を用いた110の定期的な臨床スキャンからトレーニングする。
論文 参考訳(メタデータ) (2024-06-19T02:42:29Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
既存のビデオベースの手法では、左室領域や運動による左室の変化にはあまり注意を払わない。
本稿では,左室分割課題を伴う半教師付き補助学習パラダイムを提案し,左室領域の表現学習に寄与する。
提案手法は,0.22 MAE,0.26 RMSE,1.9%$R2$の改善により,スタンフォードデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-09T05:57:01Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
逆等角問題の解法としてGeodesic-BPを提案する。
その結果,Geodesic-BPは人工心臓の活性化を高精度に再現できることが示唆された。
パーソナライズド医療への将来のシフトを考えると、Geodesic-BPは将来の心臓モデルの機能化に役立つ可能性がある。
論文 参考訳(メタデータ) (2023-08-16T14:57:12Z) - Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly
Detection [33.48389041651675]
心電図(Electrocardiogram、ECG)は、心疾患の診断に広く用いられるツールである。
希少な心疾患は、トレーニングデータセットがすべての心疾患を排出できないことを考慮して、従来の心電図解析を用いて診断されることがある。
本稿では、異常検出を用いて不健康状態を特定し、通常の心電図をトレーニング用として用いることを提案する。
論文 参考訳(メタデータ) (2023-08-03T09:16:57Z) - Analysis of Arrhythmia Classification on ECG Dataset [0.0]
不整脈は、心臓のポンプ機構が異常になる状態である。
本研究は、ECGデータセット上の不整脈分類の分析である。
論文 参考訳(メタデータ) (2023-01-10T14:02:24Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
本稿では,ECG信号の自動診断のためのGAN(Generative Adversarial Network)を用いた2階層型階層型ディープラーニングフレームワークを提案する。
第1レベルのモデルはメモリ拡張DeepオートエンコーダとGANで構成されており、異常信号と通常のECGを区別して異常検出を行う。
第2レベルの学習は、異なる不整脈識別のための堅牢な多クラス分類を目指している。
論文 参考訳(メタデータ) (2022-10-19T12:29:05Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
本稿では,意図に基づく畳み込みニューラルネットワーク(ABCNN)を用いて生の心電図信号に対処し,正確な不整脈検出のための情報的依存関係を自動的に抽出する手法を提案する。
我々の主な課題は、正常な心拍から不整脈を見つけ、その間に5種類の不整脈から心疾患を正確に認識することである。
実験の結果,提案するABCNNは広く使用されているベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-08-18T14:55:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。