論文の概要: Rephrasing natural text data with different languages and quality levels for Large Language Model pre-training
- arxiv url: http://arxiv.org/abs/2410.20796v1
- Date: Mon, 28 Oct 2024 07:30:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:14:30.250613
- Title: Rephrasing natural text data with different languages and quality levels for Large Language Model pre-training
- Title(参考訳): 大言語モデル事前学習における異なる言語と品質レベルによる自然テキストデータの書き直し
- Authors: Michael Pieler, Marco Bellagente, Hannah Teufel, Duy Phung, Nathan Cooper, Jonathan Tow, Paulo Rocha, Reshinth Adithyan, Zaid Alyafeai, Nikhil Pinnaparaju, Maksym Zhuravinskyi, Carlos Riquelme,
- Abstract要約: 既存の結果をC4で複製し、最適化されたリフレーズパイプラインで拡張することで、以前の作業の上に構築します。
私たちのパイプラインは、単言語と多言語の両方のセットアップにおける標準評価ベンチマークのパフォーマンス向上につながります。
- 参考スコア(独自算出の注目度): 12.29061850090405
- License:
- Abstract: Recently published work on rephrasing natural text data for pre-training LLMs has shown promising results when combining the original dataset with the synthetically rephrased data. We build upon previous work by replicating existing results on C4 and extending them with our optimized rephrasing pipeline to the English, German, Italian, and Spanish Oscar subsets of CulturaX. Our pipeline leads to increased performance on standard evaluation benchmarks in both the mono- and multilingual setup. In addition, we provide a detailed study of our pipeline, investigating the choice of the base dataset and LLM for the rephrasing, as well as the relationship between the model size and the performance after pre-training. By exploring data with different perceived quality levels, we show that gains decrease with higher quality. Furthermore, we find the difference in performance between model families to be bigger than between different model sizes. This highlights the necessity for detailed tests before choosing an LLM to rephrase large amounts of data. Moreover, we investigate the effect of pre-training with synthetic data on supervised fine-tuning. Here, we find increasing but inconclusive results that highly depend on the used benchmark. These results (again) highlight the need for better benchmarking setups. In summary, we show that rephrasing multilingual and low-quality data is a very promising direction to extend LLM pre-training data.
- Abstract(参考訳): 最近発表されたLLMの事前学習のための自然テキストデータの表現に関する研究は、元のデータセットと合成されたデータを組み合わせる際に有望な結果を示している。
既存の結果をC4で複製し、最適化されたリフレージングパイプラインでCulturaXの英語、ドイツ語、イタリア語、スペイン語のオスカーサブセットに拡張することで、これまでの作業の上に構築しました。
私たちのパイプラインは、単言語と多言語の両方のセットアップにおける標準評価ベンチマークのパフォーマンス向上につながります。
さらに,このパイプラインについて詳細な研究を行い,モデルサイズと事前学習後の性能との関係について,ベースデータセットとLLMの選択について検討する。
異なる品質レベルのデータを探索することにより、より高い品質でゲインが減少することを示す。
さらに,モデルファミリ間の性能の違いは,モデルサイズの違いよりも大きいことがわかった。
これは、大量のデータを言い換えるLLMを選択する前に、詳細なテストの必要性を強調します。
さらに,合成データによる事前学習が教師付き微調整に及ぼす影響について検討した。
ここでは、使用済みのベンチマークに大きく依存する、増大するが決定的でない結果が見つかる。
これらの結果(これも)は、より良いベンチマーク設定の必要性を強調します。
要約すると、LLM事前学習データを拡張するために、多言語データと低品質データをリフレージングすることが非常に有望な方向であることが示される。
関連論文リスト
- Improving Pretraining Data Using Perplexity Correlations [56.41097718862742]
我々は,パープレキシティ-ベンチマーク相関の推定を中心に,データ選択のための新しい統計フレームワークを構築した。
8つのベンチマークで1億6000万のパラメータスケールで事前トレーニングを行う場合,提案手法は各ベンチマークにおいてDSIRよりも優れる。
論文 参考訳(メタデータ) (2024-09-09T17:23:29Z) - Scaling Retrieval-Based Language Models with a Trillion-Token Datastore [85.4310806466002]
検索ベースLMが使用するデータストアのサイズを増大させることで,言語モデリングや下流タスクを一元的に改善できることがわかった。
データストア、モデル、事前学習データサイズで計算最適スケーリング曲線をプロットすることにより、より大きなデータストアを使用することで、同じトレーニング計算予算のモデル性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-07-09T08:27:27Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
モデル性能はトレーニングデータの圧縮比と負の相関関係にあり,トレーニング損失が小さくなるのが普通である。
エントロピー法則の知見に基づいて, 極めて効率的で普遍的なデータ選択法を提案する。
また,モデルトレーニング開始時の潜在的な性能リスクを検出するエントロピー法則の興味深い応用を提案する。
論文 参考訳(メタデータ) (2024-07-09T08:14:29Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
大規模言語モデル(LLM)と人間の嗜好との整合性を高める新しいフレームワークを提案する。
私たちのキーとなるアイデアは、小さな(種)データの中で人間の事前知識を活用することです。
本稿では,ノイズ認識型選好学習アルゴリズムを導入し,生成した選好データにおける品質低下のリスクを軽減する。
論文 参考訳(メタデータ) (2024-06-06T18:01:02Z) - GeMQuAD : Generating Multilingual Question Answering Datasets from Large Language Models using Few Shot Learning [4.8838210812204235]
本稿では,対象言語に1つの例があるICLを用いて生成されたデータセットに対して,半教師付き学習手法であるGeMQuADを提案する。
我々は、特に低リソースの多言語設定において、モデル性能を向上させるために、高品質なデータを反復的に識別する。
我々のフレームワークは、ヒンディー語で0.22/1.68 F1/EMポイント、MLQAデータセットでスペイン語で0.82/1.37 F1/EMポイントで機械翻訳拡張モデルより優れています。
論文 参考訳(メタデータ) (2024-04-14T06:55:42Z) - A synthetic data approach for domain generalization of NLI models [13.840374911669167]
自然言語推論(NLI)はLLMにとって重要なベンチマークタスクである。
合成された高品質データセットは、下流アプリケーションでゼロショット使用にNLIモデルを適用することができることを示す。
我々は、このデータに基づいてトレーニングされたモデルが、完全に下流のテスト設定に最適な一般化があることを示します。
論文 参考訳(メタデータ) (2024-02-19T18:55:16Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - When Less is More: Investigating Data Pruning for Pretraining LLMs at
Scale [12.94829977468838]
大量のテキストデータが大きな言語モデルの開発に大きく貢献している。
これまで、データセットを高品質なサブセットまで掘り下げる努力は、ルールベースのフィルタとしてエンコードされた手作りのものに依存してきた。
より広い視点で、事前学習データの品質を測定するために使用できる、スケーラブルなデータ品質の推定を探求します。
論文 参考訳(メタデータ) (2023-09-08T19:34:05Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
本稿では,データ生成,モデルトレーニング,評価を橋渡しする新しいクローズドループシステムを提案する。
各ループ内で、MLLM-DataEngineはまず評価結果に基づいてモデルの弱点を分析する。
ターゲットとして,異なる種類のデータの比率を調整する適応型バッドケースサンプリングモジュールを提案する。
品質については、GPT-4を用いて、各データタイプで高品質なデータを生成する。
論文 参考訳(メタデータ) (2023-08-25T01:41:04Z) - On the Transferability of Pre-trained Language Models: A Study from
Artificial Datasets [74.11825654535895]
大規模未ラベルテキストデータ上での事前学習言語モデル(LM)により、ダウンストリームのパフォーマンスが極めて容易になる。
我々は,事前学習データに含まれる特定の特徴について,セマンティクス以外では,下流タスクのスクラッチからトレーニングしたデータよりも,事前学習したLMを優れているか検討した。
論文 参考訳(メタデータ) (2021-09-08T10:39:57Z) - How much pretraining data do language models need to learn syntax? [12.668478784932878]
トランスフォーマーに基づく事前訓練型言語モデルは、多くのよく知られたNLUベンチマークにおいて優れた結果を得る。
本稿では,RoBERTaを用いたモデル知識に対する事前学習データサイズの影響について検討する。
論文 参考訳(メタデータ) (2021-09-07T15:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。