論文の概要: Temporal Streaming Batch Principal Component Analysis for Time Series Classification
- arxiv url: http://arxiv.org/abs/2410.20820v1
- Date: Mon, 28 Oct 2024 08:11:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:44.625441
- Title: Temporal Streaming Batch Principal Component Analysis for Time Series Classification
- Title(参考訳): 時系列分類のための時間ストリーミングバッチ主成分分析
- Authors: Enshuo Yan, Huachuan Wang, Weihao Xia,
- Abstract要約: 時系列データに対する主成分分析(PCA)に基づく時間的ストリーミング圧縮と次元削減アルゴリズムを提案する。
提案手法は,シーケンス長の増加に伴って効率が向上する傾向を示す。
- 参考スコア(独自算出の注目度): 4.622165486890317
- License:
- Abstract: In multivariate time series classification, although current sequence analysis models have excellent classification capabilities, they show significant shortcomings when dealing with long sequence multivariate data, such as prolonged training times and decreased accuracy. This paper focuses on optimizing model performance for long-sequence multivariate data by mitigating the impact of extended time series and multiple variables on the model. We propose a principal component analysis (PCA)-based temporal streaming compression and dimensionality reduction algorithm for time series data (temporal streaming batch PCA, TSBPCA), which continuously updates the compact representation of the entire sequence through streaming PCA time estimation with time block updates, enhancing the data representation capability of a range of sequence analysis models. We evaluated this method using various models on five real datasets, and the experimental results show that our method performs well in terms of classification accuracy and time efficiency. Notably, our method demonstrates a trend of increasing effectiveness as sequence length grows; on the two longest sequence datasets, accuracy improved by about 7.2%, and execution time decreased by 49.5%.
- Abstract(参考訳): 多変量時系列分類では、現在のシーケンス解析モデルには優れた分類能力があるが、長いトレーニング時間や精度の低下など、長いシーケンス多変量データを扱う場合の重大な欠点が示されている。
本稿では,拡張時系列と複数変数がモデルに与える影響を緩和し,時系列多変量データに対するモデル性能の最適化に着目する。
時系列データ(時間的ストリーミングバッチPCA,TSBPCA)に対する主成分分析(PCA)に基づく時間的ストリーミング圧縮と次元性低減アルゴリズムを提案する。
提案手法は, 5つの実データセット上で様々なモデルを用いて評価し, 実験結果から, 分類精度と時間効率の点で良好な性能を示した。
特に,シーケンス長の増加に伴って効率が向上する傾向を示す。2つの長いシーケンスデータセットでは,精度が約7.2%向上し,実行時間が49.5%低下した。
関連論文リスト
- MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - Multi-Scale Dilated Convolution Network for Long-Term Time Series Forecasting [17.132063819650355]
時系列の周期と傾向を捉えるために,MSDCN(Multi Scale Dilated Convolution Network)を提案する。
指数関数的に増加する拡張と異なるカーネルサイズを持つ異なる畳み込みブロックを設計し、異なるスケールで時系列データをサンプリングする。
提案手法の有効性を検証するため,8つの長期時系列予測ベンチマークデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2024-05-09T02:11:01Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronosは事前訓練された確率的時系列モデルのためのフレームワークである。
クロノスモデルでは,様々な領域の時系列データを利用して,未知の予測タスクにおけるゼロショット精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-03-12T16:53:54Z) - Efficient High-Resolution Time Series Classification via Attention
Kronecker Decomposition [17.71968215237596]
高分解能時系列分類は、様々な領域で詳細な時間データが利用可能になるために不可欠である。
そこで我々は,Kroneckerで分解された注目を多段階の時系列処理に向けることで,新しい時系列トランスフォーマーバックボーン(KronTime)を提案する。
4つの時系列データセットによる実験は, ベースライン法と比較して, 優れた分類結果を示し, 効率が向上した。
論文 参考訳(メタデータ) (2024-03-07T20:14:20Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
天気予報、電力消費、株式市場などの現実世界のタスクには、時間とともに変化するデータの予測が含まれる。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
我々はGSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)の2つの新しいモジュールを提案する。
提案モデルでは,既存の手法に匹敵する計算量と性能の低減が効果的に示された。
論文 参考訳(メタデータ) (2022-10-02T06:58:49Z) - Financial Time Series Data Augmentation with Generative Adversarial
Networks and Extended Intertemporal Return Plots [2.365537081046599]
データ拡張作業に最先端の画像ベース生成モデルを適用した。
時系列の新しい画像表現である拡張時空間回帰プロット(XIRP)を導入する。
提案手法は,金融データセットの79%に対して,リターン予測誤差を7%削減できることを示す。
論文 参考訳(メタデータ) (2022-05-18T13:39:27Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Enhancing Transformer Efficiency for Multivariate Time Series
Classification [12.128991867050487]
本稿では,モデル効率と精度,複雑さの関係を考察する手法を提案する。
ベンチマークMSSデータセットの総合実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-03-28T03:25:19Z) - Robust Augmentation for Multivariate Time Series Classification [20.38907456958682]
カットアウト,カットミックス,ミックスアップ,ウィンドウワープの簡単な方法により,堅牢性と全体的な性能が向上することを示す。
InceptionTimeネットワークは18種類のデータセットで精度を1%から45%向上することを示す。
論文 参考訳(メタデータ) (2022-01-27T18:57:49Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。