論文の概要: Improving Generalization in Visual Reasoning via Self-Ensemble
- arxiv url: http://arxiv.org/abs/2410.20883v1
- Date: Mon, 28 Oct 2024 10:04:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:22:22.995430
- Title: Improving Generalization in Visual Reasoning via Self-Ensemble
- Title(参考訳): 自己集合による視覚推論における一般化の改善
- Authors: Tien-Huy Nguyen, Quang-Khai Tran, Anh-Tuan Quang-Hoang,
- Abstract要約: 本稿では,パラメータを更新せずにモデルの一般化と視覚的推論を改善する手法であるセルフアンサンブルを提案する。
私たちの重要な洞察は、LVLM自体が他のLVLMを必要とせずにアンサンブルできるということです。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The cognitive faculty of visual reasoning necessitates the integration of multimodal perceptual processing and commonsense and external knowledge of the world. In recent years, a plethora of large vision-language models (LVLMs) have been proposed, demonstrating outstanding power and exceptional proficiency in commonsense reasoning across diverse domains and tasks. Nevertheless, training such LVLMs requires a lot of costly resources. Recent approaches, instead of training LVLMs from scratch on various large datasets, focus on exploring ways to take advantage of the capabilities of many different LVLMs, such as ensemble methods. In this work, we propose self-ensemble, a novel method that improves the generalization and visual reasoning of the model without updating any parameters, a training-free method. Our key insight is that we realized that LVLM itself can ensemble without the need for any other LVLMs, which helps to unlock their internal capabilities. Extensive experiments on various benchmarks demonstrate the effectiveness of our method in achieving state-of-the-art (SOTA) performance on SketchyVQA, Outside Knowledge VQA, and out-of-distribution VQA tasks.
- Abstract(参考訳): 視覚的推論の認知学部は、多モーダルな知覚処理とコモンセンスと世界の外部知識の統合を必要とする。
近年,多種多様な領域やタスクにまたがるコモンセンス推論において,優れた能力と卓越した能力を示す大規模視覚言語モデル (LVLM) が提案されている。
それでも、そのようなLVLMの訓練には多くの費用がかかる。
近年のアプローチでは、様々な大きなデータセットでLVLMをスクラッチからトレーニングする代わりに、アンサンブル法などの多くの異なるLVLMの機能を活用する方法を模索している。
本研究では,パラメータを更新せずにモデルの一般化と視覚的推論を改善する手法であるセルフアンサンブルを提案する。
私たちの重要な洞察は、LVLM自体が他のLVLMを必要とせずにアンサンブルできることに気づきました。
各種ベンチマーク実験により,SketchyVQA,Outside Knowledge VQA,out-of-distribution VQAタスク上でのSOTA(State-of-the-art)性能を実現する上で,本手法の有効性が示された。
関連論文リスト
- Augmenting Multimodal LLMs with Self-Reflective Tokens for Knowledge-based Visual Question Answering [44.008094698200026]
本稿では,外部知識ソースを統合することでMLLMの適応性を高める新しい手法を提案する。
提案するモデルであるReflectiVA(ReflectiVA)では,反射トークンを用いて外部知識の必要性を動的に判定する。
これにより、MLLMは外部知識が不要なタスクにおいて、レイテンシとパフォーマンスを保ちながら、外部知識を管理することができる。
論文 参考訳(メタデータ) (2024-11-25T19:01:03Z) - Can MLLMs Guide Weakly-Supervised Temporal Action Localization Tasks? [6.7065734065794835]
MLLM4WTALと呼ばれる新しい学習パラダイムを導入する。
MLLMのポテンシャルを利用して、時間的アクションキーセマンティクスと完全なセマンティクスの事前を提供する。
キーセマンティックマッチング(KSM)と完全セマンティック再構成(CSR)の2つの異なるモジュールを統合することでこれを実現できる。
論文 参考訳(メタデータ) (2024-11-13T09:37:24Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Large Vision-Language Models as Emotion Recognizers in Context Awareness [14.85890824622433]
文脈対応感情認識(CAER)は、様々な文脈から感情を知覚する必要がある複雑で重要なタスクである。
以前のアプローチは主に、イメージから感情的な手がかりを抽出する洗練されたアーキテクチャを設計することに焦点を当てていた。
本稿では,LVLM(Large Vision-Language Models)を活用したCAERタスクの実現の可能性について,体系的に検討する。
論文 参考訳(メタデータ) (2024-07-16T01:28:06Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models [87.47400128150032]
本稿では,多目的視覚中心機能拡張を備えた大規模マルチモーダルモデルであるLumenという新しいLMMアーキテクチャを提案する。
ルーメンはまず、きめ細かい視覚言語の概念のアライメントを促進する。
そして、共有表現を軽量なタスクデコーダに柔軟にルーティングすることで、タスク固有のデコーダを実行する。
論文 参考訳(メタデータ) (2024-03-12T04:13:45Z) - Vision-Language Models Provide Promptable Representations for Reinforcement Learning [67.40524195671479]
視覚言語モデル(VLM)に符号化された多量の一般知識と索引可能な世界知識をインターネット規模で事前学習して具体的強化学習(RL)を行う新しい手法を提案する。
提案手法では,共通意味的推論の表現にチェーン・オブ・シントを用いることで,新規シーンのポリシー性能を1.5倍向上できることを示す。
論文 参考訳(メタデータ) (2024-02-05T00:48:56Z) - On the Performance of Multimodal Language Models [4.677125897916577]
本研究は、異なるマルチモーダル命令チューニングアプローチの比較分析を行う。
大規模言語モデルにマルチモーダル機能を組み込む際に,アーキテクチャ選択を導く上で重要な洞察を明らかにする。
論文 参考訳(メタデータ) (2023-10-04T23:33:36Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。