論文の概要: CODES: Benchmarking Coupled ODE Surrogates
- arxiv url: http://arxiv.org/abs/2410.20886v2
- Date: Wed, 20 Nov 2024 16:47:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:09:22.485149
- Title: CODES: Benchmarking Coupled ODE Surrogates
- Title(参考訳): CODE: Coupled ODE Surrogatesのベンチマーク
- Authors: Robin Janssen, Immanuel Sulzer, Tobias Buck,
- Abstract要約: CODESは、結合ODEシステムのためのサロゲートアーキテクチャの包括的な評価のためのベンチマークである。
統合並列トレーニング、Webベースの設定ジェネレータ、事前実装されたベースラインモデルとデータセットなどの機能を通じて、ユーザビリティを強調している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We introduce CODES, a benchmark for comprehensive evaluation of surrogate architectures for coupled ODE systems. Besides standard metrics like mean squared error (MSE) and inference time, CODES provides insights into surrogate behaviour across multiple dimensions like interpolation, extrapolation, sparse data, uncertainty quantification and gradient correlation. The benchmark emphasizes usability through features such as integrated parallel training, a web-based configuration generator, and pre-implemented baseline models and datasets. Extensive documentation ensures sustainability and provides the foundation for collaborative improvement. By offering a fair and multi-faceted comparison, CODES helps researchers select the most suitable surrogate for their specific dataset and application while deepening our understanding of surrogate learning behaviour.
- Abstract(参考訳): 結合ODEシステムのためのサロゲートアーキテクチャを包括的に評価するためのベンチマークであるCODESを紹介する。
平均二乗誤差(MSE)や推論時間といった標準的なメトリクスに加えて、CODESは補間、補間、補間、スパースデータ、不確実な定量化、勾配相関といった複数の次元にわたる代理行動に関する洞察を提供する。
ベンチマークでは、統合並列トレーニング、Webベースの設定生成器、事前実装されたベースラインモデルとデータセットなどの機能を通じて、ユーザビリティを強調している。
包括的なドキュメントは、持続可能性を確保し、協力的な改善の基礎を提供する。
公正で多面的な比較を提供することで、CODESは研究者が特定のデータセットとアプリケーションに対して最も適したサロゲートを選択するのに役立ち、サロゲート学習行動の理解を深める。
関連論文リスト
- Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
バイナリコード類似度検出(BCSD)は、脆弱性検出、マルウェア分析、コードの再利用識別など、多くの分野で重要な役割を果たしている。
本稿では,LLVM-IRと高レベルのセマンティック抽象化を利用して,コンパイル差を緩和するIRBinDiffを提案する。
IRBinDiffは1対1の比較と1対多の検索シナリオにおいて,他の主要なBCSD手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-24T09:09:20Z) - LiDAR: Sensing Linear Probing Performance in Joint Embedding SSL
Architectures [24.40012454562582]
LiDARは、ジョイント埋め込みアーキテクチャにおける表現の質を測定するために設計されたメトリクスである。
提案する基準は,JEアーキテクチャにおける表現の質を評価するための,より堅牢で直感的な方法である。
論文 参考訳(メタデータ) (2023-12-07T02:31:28Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
本稿では,2つの1次元目標変数間で共有される信号の同定について考察する。
そこで本研究では,地中トラスラベルの存在下で使用可能な評価指標であるICMを提案する。
また、共有変数を学習するための単純かつ効果的なアプローチとして、Deep Canonical Information Decomposition (DCID)を提案する。
論文 参考訳(メタデータ) (2023-06-27T16:59:06Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - Cross-Gradient Aggregation for Decentralized Learning from Non-IID data [34.23789472226752]
分散学習により、コラボレーションエージェントのグループは、中央パラメータサーバーを必要とせずに、分散データセットを使用してモデルを学ぶことができる。
本稿では,新たな分散学習アルゴリズムであるクロスグラディエント・アグリゲーション(CGA)を提案する。
既存の最先端の分散学習アルゴリズムよりも優れたCGA学習性能を示す。
論文 参考訳(メタデータ) (2021-03-02T21:58:12Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
本研究では,人口変動に対するモデルのロバスト性を評価する手法を開発した。
既存のデータセットの基盤となるクラス構造を利用して、トレーニングとテストの分散を構成するデータサブポピュレーションを制御する。
この手法をImageNetデータセットに適用し、様々な粒度のサブポピュレーションシフトベンチマークスイートを作成する。
論文 参考訳(メタデータ) (2020-08-11T17:04:47Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
バイナリ潜在変数を持つ変分自動エンコーダ(VAE)は、文書検索の精度の観点から最先端のパフォーマンスを提供する。
本稿では、クラス内類似度とクラス間類似度に報いるために、個別潜伏型VAEを用いたペアワイズ損失関数を提案する。
この新しいセマンティックハッシュフレームワークは、最先端技術よりも優れたパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-05-21T06:11:33Z) - Learning Discrete Structured Representations by Adversarially Maximizing
Mutual Information [39.87273353895564]
本研究では、構造化潜在変数と対象変数の相互情報を最大化することにより、ラベルのないデータから離散的構造化表現を学習する。
我々の重要な技術的貢献は、クロスエントロピー計算の実現可能性のみを前提として、相互情報を的確に見積もることができる敵の目的である。
文書ハッシュに本モデルを適用し,離散およびベクトル量子化変分オートエンコーダに基づいて,現在の最良ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-04-08T13:31:53Z) - Asymmetric Correlation Quantization Hashing for Cross-modal Retrieval [11.988383965639954]
クロスモーダルハッシュ法は異種モダリティ間の類似性検索において広く注目を集めている。
本稿では,ACQH法について述べる。
また,不均一なモダリティデータポイントのプロジェクション行列を学習し,クエリを潜在意味空間内の低次元実数値ベクトルに変換する。
学習された実数値コードワードの連続でデータベースポイントを示すために、粗大な方法で埋め込みを積み重ねた合成量子化を構成する。
論文 参考訳(メタデータ) (2020-01-14T04:53:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。