論文の概要: Deep Recurrent Stochastic Configuration Networks for Modelling Nonlinear Dynamic Systems
- arxiv url: http://arxiv.org/abs/2410.20904v1
- Date: Mon, 28 Oct 2024 10:33:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:16:05.335975
- Title: Deep Recurrent Stochastic Configuration Networks for Modelling Nonlinear Dynamic Systems
- Title(参考訳): 非線形力学系モデリングのためのディープリカレント確率的構成ネットワーク
- Authors: Gang Dang, Dianhui Wang,
- Abstract要約: 本稿ではディープリカレント構成ネットワーク(DeepRSCN)と呼ばれる新しいディープリカレント計算フレームワークを提案する。
DeepRSCNはインクリメンタルに構築され、すべての貯水池ノードは最終的な出力に直接リンクする。
トレーニングサンプルのセットが与えられた場合、DeepRSCNは、カスケードされた入力読み出し重みを持つランダム基底関数からなる学習表現を迅速に生成できる。
- 参考スコア(独自算出の注目度): 3.8719670789415925
- License:
- Abstract: Deep learning techniques have shown promise in many domain applications. This paper proposes a novel deep reservoir computing framework, termed deep recurrent stochastic configuration network (DeepRSCN) for modelling nonlinear dynamic systems. DeepRSCNs are incrementally constructed, with all reservoir nodes directly linked to the final output. The random parameters are assigned in the light of a supervisory mechanism, ensuring the universal approximation property of the built model. The output weights are updated online using the projection algorithm to handle the unknown dynamics. Given a set of training samples, DeepRSCNs can quickly generate learning representations, which consist of random basis functions with cascaded input and readout weights. Experimental results over a time series prediction, a nonlinear system identification problem, and two industrial data predictive analyses demonstrate that the proposed DeepRSCN outperforms the single-layer network in terms of modelling efficiency, learning capability, and generalization performance.
- Abstract(参考訳): ディープラーニング技術は多くのドメインアプリケーションで有望であることが示されている。
本稿では,非線形力学系をモデル化するディープリカレント確率構成ネットワーク(DeepRSCN)を提案する。
DeepRSCNはインクリメンタルに構築され、すべての貯水池ノードは最終的な出力に直接リンクする。
ランダムパラメータは監視機構の光に割り当てられ、構築されたモデルの普遍近似特性が保証される。
出力の重み付けは、未知のダイナミクスを扱うためにプロジェクションアルゴリズムを使用してオンラインで更新される。
トレーニングサンプルのセットが与えられた場合、DeepRSCNは、カスケード入力と読み出し重みを持つランダム基底関数からなる学習表現を迅速に生成できる。
時系列予測,非線形システム同定問題,および2つの産業データ予測分析による実験結果から,提案したDeepRSCNは,モデリング効率,学習能力,一般化性能において,単層ネットワークよりも優れていた。
関連論文リスト
- Self-Organizing Recurrent Stochastic Configuration Networks for Nonstationary Data Modelling [3.8719670789415925]
リカレント・コンフィグレーション・ネットワーク(Recurrent configuration network、RSCN)は、非線形力学のモデリングにおいて有望であることを示すランダム化モデルのクラスである。
本稿では,非定常データモデリングのためのネットワークの連続学習能力を高めるために,SORSCNと呼ばれる自己組織型RCCNを開発することを目的とする。
論文 参考訳(メタデータ) (2024-10-14T01:28:25Z) - Fuzzy Recurrent Stochastic Configuration Networks for Industrial Data Analytics [3.8719670789415925]
本稿では,ファジィリカレント構成ネットワーク(F-RSCN)と呼ばれる新しいニューロファジィモデルを提案する。
提案したF-RSCNは,複数の貯留層によって構成され,各貯留層は高木・スゲノ・カン(TSK)ファジィ則に関連付けられている。
TSKファジィ推論システムをRCCNに統合することにより、F-RSCNは強力なファジィ推論能力を有し、学習と一般化の両面での音響性能を実現することができる。
論文 参考訳(メタデータ) (2024-07-06T01:40:31Z) - Recurrent Stochastic Configuration Networks for Temporal Data Analytics [3.8719670789415925]
本稿では,問題解決のためのコンフィグレーションネットワーク(RSCN)のリカレントバージョンを開発する。
我々は、初期RCCNモデルを構築し、その後、オンラインで出力重みを更新する。
数値的な結果は,提案したRCCNが全データセットに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2024-06-21T03:21:22Z) - Feature-Based Echo-State Networks: A Step Towards Interpretability and Minimalism in Reservoir Computer [0.0]
本稿では,時系列予測のためのエコー状態ネットワーク(ESN)パラダイムを用いた,新しい,解釈可能なリカレントニューラルネットワーク構造を提案する。
系統的な貯水池アーキテクチャは、特徴として知られる異なる入力の組み合わせによって駆動される小さな並列貯水池を用いて開発されている。
結果として、Feat-ESN(Feat-ESN)は、従来の単一貯留層ESNよりも低いリザーブノードを持つ。
論文 参考訳(メタデータ) (2024-03-28T19:41:17Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics [6.940097162264939]
ランダム性により、SCNは冗長で品質の低い近似線形相関ノードを生成する可能性が高まる。
機械学習の基本原理、すなわち、パラメータが少ないモデルでは、一般化が向上する。
本稿では,ネットワーク構造低減のために,低品質な隠れノードをフィルタする直交SCN(OSCN)を提案する。
論文 参考訳(メタデータ) (2022-05-26T07:07:26Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
非線形システム識別のための新しいDeep Neural Network (DNN)アーキテクチャを提案する。
メモリシステムにインスパイアされたインダクティブバイアス(アーキテクチャ)と正規化(損失関数)を導入する。
このアーキテクチャは、利用可能なデータのみに基づいて、自動的な複雑性の選択を可能にする。
論文 参考訳(メタデータ) (2021-06-06T10:06:07Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。