論文の概要: Self-Organizing Recurrent Stochastic Configuration Networks for Nonstationary Data Modelling
- arxiv url: http://arxiv.org/abs/2410.10072v1
- Date: Mon, 14 Oct 2024 01:28:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 03:14:03.650733
- Title: Self-Organizing Recurrent Stochastic Configuration Networks for Nonstationary Data Modelling
- Title(参考訳): 非定常データモデリングのための自己組織的反復確率的構成ネットワーク
- Authors: Gang Dang, Dianhui Wang,
- Abstract要約: リカレント・コンフィグレーション・ネットワーク(Recurrent configuration network、RSCN)は、非線形力学のモデリングにおいて有望であることを示すランダム化モデルのクラスである。
本稿では,非定常データモデリングのためのネットワークの連続学習能力を高めるために,SORSCNと呼ばれる自己組織型RCCNを開発することを目的とする。
- 参考スコア(独自算出の注目度): 3.8719670789415925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent stochastic configuration networks (RSCNs) are a class of randomized learner models that have shown promise in modelling nonlinear dynamics. In many fields, however, the data generated by industry systems often exhibits nonstationary characteristics, leading to the built model performing well on the training data but struggling with the newly arriving data. This paper aims at developing a self-organizing version of RSCNs, termed as SORSCNs, to enhance the continuous learning ability of the network for modelling nonstationary data. SORSCNs can autonomously adjust the network parameters and reservoir structure according to the data streams acquired in real-time. The output weights are updated online using the projection algorithm, while the network structure is dynamically adjusted in the light of the recurrent stochastic configuration algorithm and an improved sensitivity analysis. Comprehensive comparisons among the echo state network (ESN), online self-learning stochastic configuration network (OSL-SCN), self-organizing modular ESN (SOMESN), RSCN, and SORSCN are carried out. Experimental results clearly demonstrate that the proposed SORSCNs outperform other models with sound generalization, indicating great potential in modelling nonlinear systems with nonstationary dynamics.
- Abstract(参考訳): リカレント確率的構成ネットワーク(Recurrent stochastic configuration network、RSCN)は、非線形力学のモデル化において有望であることを示すランダム化学習モデルのクラスである。
しかし、多くの分野において、産業システムによって生成されたデータは、しばしば非定常的な特性を示すため、構築されたモデルはトレーニングデータに対して良好に機能するが、新たに到着したデータに苦しむ。
本稿では,非定常データモデリングのためのネットワークの連続学習能力を高めるために,SORSCNと呼ばれる自己組織型RCCNを開発することを目的とする。
SORSCNは、リアルタイムで取得したデータストリームに応じて、ネットワークパラメータと貯水池構造を自律的に調整することができる。
出力重みをプロジェクションアルゴリズムを用いてオンラインで更新し、繰り返し確率的構成アルゴリズムと改良された感度解析によりネットワーク構造を動的に調整する。
エコー状態ネットワーク(ESN)、オンライン自己学習確率構成ネットワーク(OSL-SCN)、自己組織化モジュールESN(SOMESN)、RSCN、SORSCNの総合的な比較を行う。
実験の結果,提案したSORSCNは音の一般化により他のモデルよりも優れており,非線形系を非定常力学でモデル化する大きな可能性を示している。
関連論文リスト
- Deep Recurrent Stochastic Configuration Networks for Modelling Nonlinear Dynamic Systems [3.8719670789415925]
本稿ではディープリカレント構成ネットワーク(DeepRSCN)と呼ばれる新しいディープリカレント計算フレームワークを提案する。
DeepRSCNはインクリメンタルに構築され、すべての貯水池ノードは最終的な出力に直接リンクする。
トレーニングサンプルのセットが与えられた場合、DeepRSCNは、カスケードされた入力読み出し重みを持つランダム基底関数からなる学習表現を迅速に生成できる。
論文 参考訳(メタデータ) (2024-10-28T10:33:15Z) - Fuzzy Recurrent Stochastic Configuration Networks for Industrial Data Analytics [3.8719670789415925]
本稿では,ファジィリカレント構成ネットワーク(F-RSCN)と呼ばれる新しいニューロファジィモデルを提案する。
提案したF-RSCNは,複数の貯留層によって構成され,各貯留層は高木・スゲノ・カン(TSK)ファジィ則に関連付けられている。
TSKファジィ推論システムをRCCNに統合することにより、F-RSCNは強力なファジィ推論能力を有し、学習と一般化の両面での音響性能を実現することができる。
論文 参考訳(メタデータ) (2024-07-06T01:40:31Z) - Recurrent Stochastic Configuration Networks for Temporal Data Analytics [3.8719670789415925]
本稿では,問題解決のためのコンフィグレーションネットワーク(RSCN)のリカレントバージョンを開発する。
我々は、初期RCCNモデルを構築し、その後、オンラインで出力重みを更新する。
数値的な結果は,提案したRCCNが全データセットに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2024-06-21T03:21:22Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
オンライン連続学習(OCL)では、学習システムはデータのストリームを受け取り、予測とトレーニングの手順を順次実行する。
本稿では,線形予測量に対するニューラル表現と状態空間モデルを用いた確率ベイズオンライン学習モデルを提案する。
多クラス分類の実験では、モデルの予測能力と非定常性を捉える柔軟性を示す。
論文 参考訳(メタデータ) (2023-06-14T11:41:42Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
連続学習に基づく非教師付きリカレントスパイキングニューラルネットワークモデル(CLURSNN)を提案する。
CLURSNNは、ランダム遅延埋め込み(Random Delay Embedding)を使用して基盤となる動的システムを再構築することで、オンライン予測を行う。
提案手法は,進化するロレンツ63力学系を予測する際に,最先端のDNNモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-10T16:18:37Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics [6.940097162264939]
ランダム性により、SCNは冗長で品質の低い近似線形相関ノードを生成する可能性が高まる。
機械学習の基本原理、すなわち、パラメータが少ないモデルでは、一般化が向上する。
本稿では,ネットワーク構造低減のために,低品質な隠れノードをフィルタする直交SCN(OSCN)を提案する。
論文 参考訳(メタデータ) (2022-05-26T07:07:26Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。